

Ö. b. u. v. Sachverständiger f. Baugrunduntersuchungen u. Gründungen Vom Sächsischen Oberbergamt anerkannter Sachverständiger f. Geotechnik

- Baugrunduntersuchung | Gründungsberatung ...
 - Hydrogeologie | Versickerungsprüfungen 🗻
 - Abfall- | Altlastuntersuchungen 🗻
 - Altbergbau- | Hohlraumerkundung
- Erdstofflabor | Feldversuche (Inklinometer | Bohrlochkamera) ...
 - Erd- | Grundbaustatik | Standsicherheitsberechnungen ...
- Böschungs- | Felssicherungen | Stützbauwerke | Sonderlösungen
 - Altbergbausicherung | -verwahrungen -
- Markscheidewesen | Ingenieurvermessung | 3D-Aufmaße (Drohne) ...

Ingenieurbüro ECKERT GmbH | Crusiusstraße 7 | 09120 Chemnitz

Stoll Bauplanung GmbH & Co. KG Nikolaus-Otto-Straße 1 08371 Glauchau

Chemnitz, 25. Oktober 2023

ErgebnisberichtBaugrund- und Abfalluntersuchung

RegNr. / ProjNr.	08371 – 118	16788 / 40139			
Bauherren		Große Kreisstadt Glauchau Markt 1 08371 Glauchau			
		WAD GmbH An der Muldenaue 10 08373 Remse – Weidensdorf			
Vorhaben	*	Glauchau, Pestalozzistraße Ersatzneubau AW-Kanal und Straßenausbau			

Untersuchungsstufe : Hauptuntersuchung

Geotechnische Kategorie : vor der Erkundung GK 2

nach der Erkundung GK 2

Bearbeiter : Dipl.-Ing. J. Weinhold

Tel.: 0371 53012-14 / E-Mail: weinhold@eckert-chemnitz.de

Inhalt : 44 Seiten Text

5 Anlagen mit 104 Blatt

ppa. Dipl.-Ing. J. Weinhold ö.b.u.v. Sachverständiger (IK Sachsen)

für Baugrunduntersuchungen und Gründungen

Inhaltsverzeichnis

Anlageverzeichnis				
Verzeichnis der verwendeten Unterlagen				
1	Aufgabenstellung	5		
2	Feststellungen	8		
2.1	Standort	8		
2.2	Erkundungsergebnisse	8		
2.2.1	Regionalgeologie und allg. Baugrundverhältnisse	8		
2.2.2	Baugrund	9		
2.2.3	Verdichtungsmessungen	12		
2.2.4	Hydrogeologie	12		
2.3	Laborergebnisse	13		
2.3.1	Bodenmechanik	13		
2.3.2	Abfall	15		
2.4	Besonderheiten	31		
2.5	Einschätzung der Untersuchungsergebnisse hinsichtlich der Aufgabenstellung	31		
3	Schlussfolgerungen	32		
3.1	Allgemeine Einschätzung	32		
3.1.1	Kanalerneuerung	32		
3.1.2	Ausbau der Verkehrsfläche	33		
3.2	Bodenmechanische Kennwerte	35		
3.3	Homogenbereiche (VOB/C 2019)	35		
3.4	Wasserhaltung	37		
3.5	Verbau / Böschungen	37		
3.6	Wiederverwendbarkeit der Aushuberdstoffe	38		
3.6.1	Abfallrechtliche Belange	38		
3.6.2	Bodenmechanische Eignung	43		
4	Abschließende Bemerkungen	44		

RegNr.: 08371 – 118	Große Kreisstadt Glauchau - WAD GmbH \ Glauchau, Pestalozzistraße	Seite 3 von 44
ProjNr.: 16788 / 40139	ENB AW-Kanal und Straßenausbau \ Baugrund- und Abfalluntersuchung	

Anlageverzeichnis

1.1	und 1.2	Lagepläne mit Aufschlussansatzpunkten	Maßstab	1:	500
1.3		Ideal. Ingenieurgeologischer Längsschnitt	Maßstab	1:	500 / 50
2.1	bis 2.12	Schichtenprofile Aufbrüche und Rammkernsondierungen (A-RKS)	Maßstab	1:	25
3.1	3 Blatt	 bodenmechanische Laboruntersuchungen Korngrößenverteilung nach DIN EN ISO einschl. Wassergehalt nach DIN EN ISO 			
3.2	2 Blatt	Labor – bodenmechanische Untersuchungen - Zustandsgrenzen nach DIN EN ISO 178			
3.3	2 Blatt	abfallchemische Laboruntersuchungen - Asphalt nach RuVA-StB 01/05			
3.4	4 Blatt	abfallchemische Laboruntersuchungen - Beton nach EBV Tab. 1 RC-1 bis RC-3			
3.5	57 Blatt	 abfallchemische Laboruntersuchungen Bodenmaterial nach LAGA TR Boden, T Bodenmaterial nach EBV Tab. 3, BM-F0 Erweiterte Untersuchungen nach DepV 		2-1	
4	6 Blatt	Protokolle zur Verdichtungsprüfung mit dynar	mischer Fa	llplatte	
5	15 Blatt	Fotodokumentation der Aufschlüsse vor Ort			

Verzeichnis der verwendeten Unterlagen

/ 1 / Stoll Bauplanung GmbH & Co. KG
Anfragen mit Aufgabenstellung vom 26.05.2023 und 03.08.2023

/2/ Ingenieurbüro ECKERT GmbH

Vertragsangebot, Nr.: 16788 / 40139 vom 14.06.2023 Nachtragsangebot, Nr.: 16788 / 40139 – 02 vom 10.08.2023

/ 3 / Stoll Bauplanung GmbH & Co. KG Auftrag vom 11.07.2023 und 11.08.2023

/ 4 / Öffentliche Versorgungsträger, 12. – 25.07.2023
Leitungsbestandspläne / Erlaubnisscheine für Erdarbeiten bzw. Aufgrabungen

/ 5 / Stadtverwaltung Glauchau; III.10 Sicherheit/Ordnung/Verkehr Verkehrsrechtliche Anordnung §§ 44/45 StVO, 09.08.2023

/6/ Ingenieurbüro ECKERT GmbH

Mess- und Erkundungsarbeiten vor Ort, 11. – 14.08.2023

- /7/ Eurofins Umwelt Ost GmbH Niederlassung Chemnitz, 05.09. 23.10.2023
 - Asphalt nach RuVA StB 01
 - Beton nach EBV Tab. 1 RC-1 bis RC-3
 - Bodenmaterial nach LAGA TR Boden, Tabelle II.1.2-1
 - Bodenmaterial nach EBV Tab. 3, BM-F0* BM-F3
 - Erweiterte Untersuchungen nach DepV

	08371 – 118 Große Kreisstadt Glauchau - WAD GmbH \ Glauchau, Pestalozzistraße	Seite 4 von 44
	16788 / 40139 ENB AW-Kanal und Straßenausbau \ Baugrund- und Abfalluntersuchung	
/8/	Ingenieurbüro ECKERT GmbH, 26.06. – 11.07.2023 - Bestimmung der Korngrößenverteilung nach DIN EN ISO 17892-4, einschließlich natürliche Wassergehalt nach DIN EN ISO 17892-1 - Zustandsgrenzen nach DIN EN ISO 17892-12	
/9/	Stoll Bauplanung GmbH & Co. KG, 26.05.2023 Lageplan (pdf-, dwg-Datei) Maßstab	1: 500
/10/	Geologische Specialkarte der Königreichs Sachsen Blatt 94 / Glauchau-Waldenburg / 1900 Maßstab	1: 25.000
/11/	Landesvermessungsamt Sachsen – Topographische Karte Blatt 5141 / Glauchau / 2003 Maßstab	1: 25.000
/12/	LfULG Sachsen, interaktive Karten, Abruf 11.10.2023 - Sächsische Hohlraumkarte - Schutzgebiete in Sachsen - FFH und SPA-Gebiete in Sachsen - Trinkwasser- und Heilquellenschutzgebiete in Sachsen - amtliche GW-Messstellen in Sachsen	
/13/	Helmholtz-Zentrum Potsdam / Deutsches GeoForschungsZentrum GFZ interaktive Karte mit Zuordnung von Orten zu Erdbebenzonen, 11.10.	
/14/	Verordnung zur Umsetzung des Europäischen Abfallverzeichnisses (Abfallverzeichnis – Verordnung – AVV), 10. Dezember 2001	
/15/	Verordnung zur Einführung einer Ersatzbaustoffverordnung (EBV), zur I Bundes-Bodenschutz- und Altlastenverordnung und zur Änderung der Deponieverordnung und der Gewerbeabfallverordnung Ausfertigungsdatum 09.07.2021 / ausgegeben 16.07.2021	Neufassung der
/16/	Landesamt für Umwelt, Landwirtschaft und Geologie Wiederverwendung und Verwertung von Ausbauasphalt (Leitfaden, S	itand 2020)
/ 17 /	Forschungsgesellschaft für Straßen- und Verkehrswesen e.V., Köln Richtlinien und Merkblätter zum Straßenbau	
/ 18 /	bodenmechanische Analogiekennwerte und weitere Unterlagen büroeig DIN, sonstige Regelwerke, Fachliteratur, öffentlich zugängige Medien u	· ·
	· · · · · · · · · · · · · · · · · · ·	

1 Aufgabenstellung

Baumaßnahme / Aufgabenstellung

Die **Stadtverwaltung Glauchau** plant den grundhaften Ausbau der Pestalozzistraße, im Zuge dessen die **WAD GmbH** den vorhandenen Abwasserkanal erneuern möchte. Die Tiefenlage des geplanten AW-Kanales orientiert sich am Bestand und liegt zwischen 2,0 m und 3,5 m unter OK Straße. Die Bauausführung soll nach derzeitigem Stand vorzugsweise in offener Bauweise erfolgen.

In Vorbereitung der weiteren Planung bestand die Aufgabe, entlang der geplanten Trassen Untersuchungen zum Baugrund und Abfall vorzunehmen. Der Ergebnisbericht soll folgende Schwerpunkte beinhalten.

- Auswertung der Aufschlussergebnisse (DIN EN ISO 14688 / DIN EN ISO 14689)
- Dokumentation der Aufschlüsse (DIN 4023)
- zeichnerische Darstellung in einem ingenieurgeologischen Schnitt mit Angaben zur Baugrundschichtung und den hydrogeologischen Verhältnissen (Baugrundmodell)
- Klassifikation Baugrundschichten (DIN 18196 / DIN 18300)
- Aussagen zur Tragfähigkeit in der Rohrgrabensohle und dem Straßenplanum
- Angabe maßgebender geotechnischer Bemessungskennwerte
- Hinweise zu Erd- und Tiefbauarbeiten (Wasserhaltung, Böschungen, etc.)
- Eignung der Aushubmassen als Baustoff
- Aussagen zur chemischen Beschaffenheit des ggf. anstehenden Grund- bzw.
 Schichtenwassers (DIN 4030 und DIN 50929 Beton-/Stahlaggressivität)
- Bewertung von Ausbaustoffen nach Abfallrecht (RuVA-StB 01/05, LAGA, EBV, DepV)

Gemäß den Aufgabenstellungen und den Vertragsangeboten (⇒ /1/ und /2/) wurde folgender Untersuchungsaufwand vereinbart:

- 6 x Öffnen befestigter Oberflächen (Asphalt), Teufe bis max. 0,15 m
- 3 x Handschurf groß für Ausführung dyn. Fallplatte, Teufe bis max. 0,60 m
- 3 x Handschurf klein ohne Ausführung dyn. Fallplatte, Teufe bis max. 0,60 m
- 3 x Verdichtungsprüfung mittels dynamischer Plattendruckversuche auf ungeb.
 Tragschicht und OK Planum
- 6 x Rammkernsondierung (RKS), Teufe bis 4,00 m oder Ende der Rammfähigkeit (Die RKS werden an den 6 Ansatzpunkten jeweils 2 x abgeteuft, um die notwendigen Probenmengen für die chem. Analysen nach LAG TR Boden und EBV gewinnen zu können.)
- Einmessen der Aufschlusspunkte nach Lage und Höhe

Die Aufschlüsse waren mittels Feldansprache nach geologischen und bodenmechanischen Kriterien zu dokumentieren. Zur genaueren Bestimmung wurden folgende Analysen kalkuliert.

- 7 x Bestimmung natürlicher Wassergehalt nach DIN EN ISO 17892-1
- 2 x Bestimmung Fließ- und Ausrollgrenze nach DIN EN ISO 17892-12
- 5 x Bestimmung Kornverteilung nach DIN EN ISO 17892-4

Weiter waren folgende chemische Untersuchungen vereinbart:

- 1 x Wasseranalyse nach DIN 4030 + 50929
- 2 x Untersuchung Asphalt nach RuVA-StB 01/05
- 4 x Untersuchung Auffüllungen + nat. Böden nach LAGA TR Boden Tab. II.1.2-1
- 4 x Untersuchung Auffüllungen + nat. Böden nach EBV Anl. 1 Tab. 3
- Ergänzende Untersuchungen nach DepV bei > Z 2 nach Lage / > BM-F3 nach EBV

Durchgeführte Untersuchungen

Nach Beauftragung und Vorlage aller Unterlagen (⇒ /3/ bis /5/) wurden vom 11. bis 18.08.2023 vor Ort die Mess- und Erkundungsarbeiten durch die Ingenieurbüro Eckert GmbH ausgeführt.

Entsprechend der vertraglichen Vereinbarungen und den anstehenden Verhältnissen wurden insgesamt nachfolgende Erkundungen ausgeführt.

- 6 x Öffnen befestigter Oberflächen (Asphalt)
- 3 x Handschurf groß für Ausführung dyn. Fallplatte, Teufe bis -0,60 m
- 3 x Handschurf klein ohne Ausführung dyn. Fallplatte, Teufe bis -0,60 m
- 3 x Verdichtungsprüfung mittels dynamischer Plattendruckversuche auf ungeb.
 Tragschicht und OK Planum
- 6 x Rammkernsondierung (RKS), Teufen 3,30 ... 4,10 m
 (Die RKS wurden jeweils 2 x abgeteuft)
- Probenentnahme Asphalt, Böden
 (Die Aufschlüsse waren frei von Wasseranschnitten, d.h. eine Wasserprobenentnahme, einschließlich nachfolgender Analyse nach DIN 4030 + DIN 50929 musste entfallen)
- Einmessen der Aufschlusspunkte nach Lage und Höhe

Alle Aufschlüsse wurden vor Ort mittels Feldansprache nach geologischen und bodenmechanischen Kriterien aufgenommen, sowie in Schichtenverzeichnissen dokumentiert. Nach der Probenentnahme erfolgte vertragsgemäß das Verschließen des Straßenoberbaus unter Verwendung von Bornit-Reaktiv-Asphalt.

Mit Ausnahme des Aufschlusses 2-A/RKS konnten alle bis zur vertraglich vereinbarten Erkundungstiefe niedergebracht werden. Infolge ungenügenden Rammfortschrittes musste die 2-A/RKS in einer Teufe von 3,30 m abgebrochen werden, was in den Schichtenprofilen der Anlage 2 mit *kein weiteres sondieren mögl.!* dokumentiert wurde.

Die Aufschlussansatzpunkte wurden vor Ort nach Lage und Höhe eingemessen, wobei als Lagebezug die vorhandene Bebauung und als Höhenbezug verschiedene Kanaldeckel entlang der Trasse, einschließlich der dazugehörigen Angaben im Schachtschein Abwasser der WAD GmbH dienten. Die Lage der Aufschlussansatzpunkte und Höhenbezugspunkte kann den Lageplänen (⇒ Anlagen 1.1 und 1.2) entnommen werden.

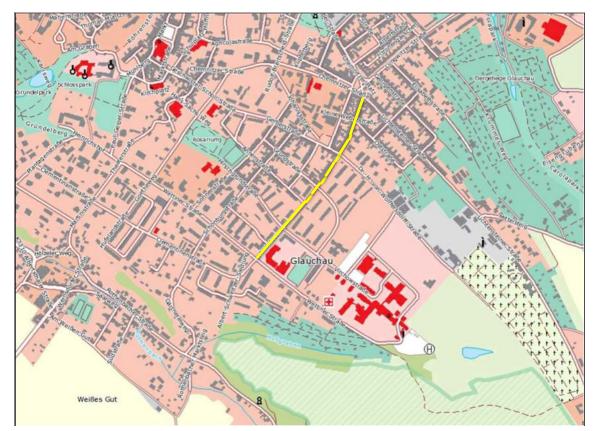
Nach nochmaliger Bemusterung der Bodenproben im büroeigenen Labor erfolgte, gemäß den organoleptischen Befunden der Proben das Zusammenstellen repräsentativer Einzel- und Mischproben sowie die Durchführung nachfolgend beschriebener Laboranalysen.

abfallchemische Untersuchungen (Eurofins Umwelt Ost GmbH)

- 3 x Untersuchung gebundener Straßenoberbau Asphalt) nach RuVA-StB 01/05
- 1 x Untersuchung gebundener Straßenoberbau (Beton) nach EBV Tab. 1 RC-1 bis RC-3 + Anl. 4 Tab. 2.2, mit 2:1-Schütteleluat
- 4 x Untersuchung Auffüllungen und natürlich gewachsene Böden nach LAGA TR Boden, Tabelle II.1.2-1
- 3 x Ergänzende Untersuchungen nach DepV bei > Z 2
- 4 x Untersuchung Auffüllungen und natürlich gewachsene Böden nach EBV Anl. 1 Tab. 3, BM-0* / BG-0*, mit 2:1-Schütteleluat
- 2 x Ergänzende Untersuchungen nach DepV bei > BM-F3 nach EBV

bodenmechanische Untersuchungen (Ingenieurbüro ECKERT GmbH)

- 6 x Bestimmung Kornverteilung nach DIN EN ISO 17892-4, einschließlich Bestimmung der natürlichen Wassergehalte nach DIN EN ISO 17892-1
- 2 x Bestimmung Fließ- und Ausrollgrenze nach DIN EN ISO 17892-12


2 Feststellungen

2.1 Standort

Die Baumaßnahme befindet sich südöstlich vom Zentrum in Glauchau. Morphologisch liegt die Trasse auf einer Hochterrasse und quert ehemalige Bachtäler und Quellmulden.

Geländebeschaffeinheit : Hochterrasse / Querung ehemaliger Bachtäler

Geländenutzung : öffentliche Verkehrsfläche Geländehöhe : ca. 283 ... 290 m NHN

Übersichtkarte (unmaßstäblich)

2.2 Erkundungsergebnisse

2.2.1 Regionalgeologie und allg. Baugrundverhältnisse

Regionalgeologisch liegt der Standort im Werdau-Hainichener-Trog (Erzgebirgisches Becken). Anhand vorliegender Erkundungsergebnissen und regionaler Erfahrungen des Unterzeichners sind im tieferen Untergrund kleinstückige Konglomerate, sowie Schluff- und Sandsteinen der Mülsener Folge des Oberen Rotliegenden (Perm) zu erwarten.

Infolge von Verwitterungserscheinungen stehen die Schichten des Rotliegenden oberflächennah allgemein vollständig verwittert bis zersetzt an und können somit als "Lockergestein" bzw. "Boden" angesprochen werden. Mit zunehmender Teufe verringert sich der Verwitterungsgrad über stark, mäßig und schwach verwittert bis zu frisch, so dass hier von Festgestein bzw. Fels gesprochen werden muss.

Große Kreisstadt Glauchau - WAD Gr	mbH \	Glauchau, Pestalozzistraße
ENB AW-Kanal und Straßenausbau \	Baug	rund- und Abfalluntersuchung

Seite 9 von 44

Gemäß der vorliegenden Erkundungsergebnisse und den regionalen Erfahrungen des Unterzeichners werden die Schichten des Rotliegenden durch mächtige pleistozäne Talauensedimente (Terrassenschotter, Terrassenlehm), teilweise durch holozäne Talauensedimente (Auelehm), sowie teilweise durch Reste einer Solifluktionsdecke (Hanglehm) überlagert.

Die natürlich gewachsenen Böden werden entlang der Trasse durch unterschiedlich mächtige, in der Zusammensetzung schwankende anthropogene Auffüllungen (Leitungsgrabenverfüllung, etc.) überlagert und zuoberst durch die Konstruktionsschichten der Verkehrsfläche (ungebundene und gebundene Schichten) abgedeckt.

2.2.2 Baugrund

Reg.-Nr.: 08371 – 118 Proj.-Nr.: 16788 / 40139

In den Aufschlüssen wurden nachfolgend genauer beschriebene Bodenschichten bzw. Straßenoberbau erkundet.

Straßenoberbau (1-A/RKS)

0,00 m	- 0,10 m	Asphalt
0,10 m	- 0,22 m	Beton
0,22 m	- 0,35 m	ungeb. Tragschicht (Mineralgemisch) mitteldicht gelagert gering wasserempfindlich Bodengruppe nach DIN 18196 [GU]
	0,35 m	Oberbau

Straßenoberbau (2-A/RKS)

0,00 m	- 0,08 m	Asphalt
0,08 m	- 0,19 m	ungeb. Tragschicht / Kiestragschicht (Kiessand) mitteldicht gelagert gering wasserempfindlich Bodengruppe nach DIN 18196 [GU]
0,19 m	- 0,33 m	ungeb. Tragschicht, packlagerähnlich (Mineralgemisch, Schotter, Steinsatz) mitteldicht gelagert gering wasserempfindlich Bodengruppe nach DIN 18196 [GU]
	0,33 m	Oberbau

	08371 – 118 16788 / 40139		au - WAD GmbH \ Glauchau, Pestalozzistraße Seite 10 von 44 Benausbau \ Baugrund- und Abfalluntersuchung
Straß	enoberbau	(3-A/RKS)	
	0,00 m	- 0,09 m	Asphalt
	0,09 m	- 0,50 m	Packlager
			(Steinsatz, schwer lösbar)
			dicht gelagert
			nicht wasserempfindlich Bodengruppe nach DIN 18196 []
		0,50 m	Oberbau
Straß	enoberbau	(4-A/RKS)	
	0,00 m	- 0,10 m	Asphalt
	0,10 m	- 0,11 m	Fräsgut
	0,11 m	- 0,25 m	Pflaster
	0,25 m	- 0,50 m	ungeb. Tragschicht
			(Mineralgemische)
			mitteldicht gelagert gering wasserempfindlich
			Bodengruppe nach DIN 18196 [GU]
		0,50 m	Oberbau
Straß	enoberbau	(5-A/RKS)	
	0,00 m	- 0,08 m	Asphalt
	0,08 m	- 0,19 m	Pflaster
	0,19 m	- 0,40 m	Packlager
			(Steinsatz mit Kiessand)
			mitteldicht bis dicht gelagert nicht wasserempfindlich
			Bodengruppe nach DIN 18196 []
		0,40 m	Oberbau
Stroft	anaharhau	·	
Suais	enoberbau		Acabalt
	0,00 m 0,13 m	- 0,13 m - 0,25 m	Asphalt
	0,13111	- 0,25 111	ungeb. Tragschicht (Mineralgemische)
			mitteldicht bis dicht gelagert
			gering wasserempfindlich
			Bodengruppe nach DIN 18196 [GU]
	0,25 m	- 0,40 m	ungeb. Tragschicht, packlagerähnlich
			(Mineralgemisch, Schotter, Steinsatz)
			mitteldicht bis dicht gelagert nicht wasserempfindlich
			Bodengruppe nach DIN 18196 []
		0,40 m	Oberbau

Reg.-Nr.: 08371 – 118 Proj.-Nr.: 16788 / 40139

Seite 11 von 44

Auffüllungen

± sandiger, ± kiesiger, schwach toniger Schluff

± sandiger, schwach schluffiger Sand und Kies

(regionaltypischer Bodenaushub, Mineralgemische, Kiessand, teilweise mit

± Bauschutt, ±Schlacke, ±Keramik, ± Müll, etc.)

gering bis stark wasserempfindlich

Lagerung: locker bis mitteldicht

Konsistenz: weich bis steif (bindige Anteile)
Bodengruppe: [TL] / [GU] / A nach DIN 18196

Mächtigkeit (erkundet): 0,20 m bis 1,25 m

Hanglehm

± sandiger, schwach toniger Schluff, mit schwachen organischen Beimengungen

durchschnittlich bis erhöht wasserempfindlich

Konsistenz: steif bis halbfest

Bodengruppe: TL – ST* nach DIN 18196

Mächtigkeit (erkundet): 0,90 m

Auelehm

sandiger bis stark sandiger, schwach kiesiger, schwach toniger Schluff

erhöht bis stark wasserempfindlich Konsistenz: weich bis steif

Bodengruppe: TL – ST* nach DIN 18196

Mächtigkeit (erkundet): 0,70 m bis 2,40 m

Terrassenlehm

± sandiger, ± toniger, ± kiesiger Schluff

durchschnittlich bis erhöht wasserempfindlich

Konsistenz: steif bis weich

Bodengruppe: TM nach DIN 18196 Mächtigkeit (erkundet): 0,95 m bis 2,80 m

Terrassenschotter

sandiger bis stark sandiger, ± schluffiger, teilweise schwach steiniger Kies bis

Feinkies

durchschnittlich bis stark wasserempfindlich
Lagerung: mitteldicht bis dicht
Konsistenz: steif (bindige Anteile)
Bodengruppe: SU* / GU nach DIN 18196

Mächtigkeit (erkundet): 0,25 m bis 2,60 m

Weitere Einzelheiten zu Korngrößen, Schichtenaufbau, Konsistenz, Lagerungsdichte usw. sind der Anlage 1.3, der Anlage 2, sowie den Anlagen 3.1 und 3.2 zu entnehmen.

2.2.3 Verdichtungsmessungen

Auf der ungebundenen Tragschicht und dem Planum wurden vertragsgemäß in drei Straßenaufbrüchen die vorhandene Resttragfähigkeit mit folgenden Ergebnissen ermittelt (⇒ Anlage 4). Ungenügende Tragfähigkeiten, sowohl nach ZTV E-StB 17 als auch ZTV SoB-StB 20, sind dabei farbig markiert.

Dynamischer Plattendruckversuch nach TP BF – StB, Teil B 8.3								
Auf- schluss	Tiefe u. OKG	E _{vd}	E _{v2 rechn.} 1)	Prüfschicht	Schichtbeschreibung / Bemerkungen			
Comaco	[m]	[MN/m²]	[MPa]					
2-A/RKS	0,08	38,48	ca. 68	OK ungeb. Tragschicht	Auffüllung [GI], mitteldicht (Kies, sandig, schwach schluffig)			
2-A/RN3	0,60	33,44	ca. 55	Planum / Untergrund	Auffüllung [GU], mitteldicht (Mittelsand und Kies, grobsandig, schwach schluffig, schwach feinsandig)			
4-A/RKS	0,25	59,36	ca. 105	OK ungeb. Tragschicht	Auffüllung [GU], mitteldicht (Grobkies, mittelkiesig, schwach feinkiesig, schwach schluffig, schwach grobsandig, sehr schwach mittelsandig)			
4-A/NN3	0,50 13,51 ca. 16		ca. 16	Planum / Untergrund	Auffüllung [TL], weich (Schluff, sandig, kiesig, schwach tonig)			
5-A/RKS	0,19	51,09	ca. 100	OK ungeb. Tragschicht	Auffüllung – Packlager und Kiessand [], mitteldicht – dicht (Steine, kiesig, sandig)			
3-A/NN3	0,60	15,20	ca. 19	Planum / Untergrund	Hanglehm TL – ST*, steif – halbfest (Schluff, sandig, schwach tonig, schwach org. Beimengung)			

Die Umrechnung erfolgt in Abhängigkeit der angetroffenen Böden und anhand von Erfahrungswerten zur Korrelation zwischen dynamischem und statischem Verformungsmodul.

Die zuvor aufgelisteten Prüfwerte stellen lediglich **Anhaltswerte** für die Tragfähigkeit der geprüften Schicht, da die Messungen nicht auf einer ebenen Fläche sondern innerhalb von Geländehohlformen (Aufbrüche) ausgeführt wurden.

Dabei gilt festzuhalten, dass sowohl die Tragfähigkeit im Planumsbereich von $E_{v2} \ge 45$ MPa als auch die Tragfähigkeit auf Oberfläche der ToB (für eine angenommene Belastungsklasse > Bk1,0) von $E_{v2} \ge 120$ MPa nicht bzw. nur vereinzelt erreicht wurde.

2.2.4 Hydrogeologie

Offene Gewässer: Die Trasse quert mehrere ehemalige Bachtäler und Quellmulden, die im Zuge der Besiedlung offensichtlich überbaut wurden.

Ein hydrogeologisches Gutachten liegt dem Unterzeichner nicht vor. Zum Zeitpunkt der Erkundung (05.-06.06.2023) konnte in den Aufschlüssen kein Wasser angeschnitten werden.

Anhand der Erkundungsergebnisse und unseren büroeigenen Archivunterlagen, können in Verbindung mit den örtlichen Verhältnissen einfache hydrogeologische Verhältnisse abgeleitet werden. Bedingt durch den Schichtenaufbau, insbesondere die Terrassenschotter, kann in größeren Teufen ein geschlossener Grundwasserhorizont nicht ausgeschlossen werden.

Zusätzlich kann sich temporär und meist lokal auftretendes Grund- bzw. Sicker-/Schichtwasser ausbilden. Dieser zumeist oberflächennahe Abfluss von versickerndem Niederschlag strömt der Schwerkraft folgend in tiefere Bodenschichten ab.

Das Aufkommen und die Intensität dieser Wässer ist abhängig vom veränderlichen Wasserdargebot und durch Wechsel von Niederschlags- und Trockenperioden sowie den Zeitpunkten von Schneeschmelzen schwankend. Abgesehen von extremen Witterungslagen wird im Regelfall kein bzw. nur geringer Wasseranfall zu erwarten sein. Weiterhin gilt festzuhalten, dass die erkundeten hydrogeologischen Verhältnisse jahreszeitlich und witterungsabhängig bedingten Schwankungen unterliegen, so dass diese nur temporäre Zustände zum Zeitpunkt der Erkundung (Stichtagsmessung) beschreiben und daher nicht als Bemessungswasserstände angesetzt werden können.

Nach der Unterlage /12/ liegt im Umfeld der geplanten Baumaßnahme keine amtliche Grundwassermessstelle vor.

2.3 Laborergebnisse

Nach Auswertung der Erkundungsarbeiten wurden durch den Unterzeichner maßgebende Einzel- und Mischproben zusammengestellt und anschließend bodenmechanische, sowie chemische Laboruntersuchungen durchgeführt.

Die Probenbezeichnung kann der Anlage 2 und die Laborergebnisse den Anlagen 3 entnommen werden. Dabei beschreibt die erste Ziffer der Probenbezeichnung die Aufschlussnummer, während die zweite eine fortlaufende Nummerierung der Proben je Aufschluss darstellt.

2.3.1 Bodenmechanik

Zustandsgrenzen nach DIN EN ISO 17892-12

Die Bestimmung von Konsistenzgrenzen bindiger Böden erfolgte an je einer repräsentativen Probe des anstehenden Aue- bzw. Terrassenlehms. Details zum Laborbefund können dem Protokoll in der Anlage 3.2 entnommen werden beziehungsweise sind diese in der nachfolgenden Tabelle zusammengefasst.

Probe	Natürlicher Wassergeh alt [M%]	Fließgrenze w _L [-]	Ausroll- grenze w _P Zahl I _P [-]		Konsistenz- zahl I _C [-]	Zustands- form
Wz 1 (587) – EP 6/6 Auelehm	19,1	29,3	19,5	0,098	0,888	steif
Wz 2 (588) – EP 5/5 Terrassenlehm	16,2	37,2	19,9	0,173	1,087	halbfest

Ein wichtiges Ergebnis dieser Laboruntersuchungen ist, dass die Feldansprachen zur Konsistenz der bindigen Böden anhand des Laborbefundes mehrheitlich bestätigt werden konnte.

Gemäß der Plastizität ist die Wasserempfindlichkeit der Böden wie folgt einzustufen.

- Auelehm stark wasserempfindlich

- Terrassenlehm durchschnittlich bis erhöht wasserempfindlich

Kornverteilung n. DIN EN ISO 17892-4, einschl. nat. Wassergehalt n. DIN EN ISO 17892-1

Die in Anlage 3.1 als Sieblinien dargestellten Ergebnisse zur Untersuchung von Zusammensetzungen der Korngrößen nach DIN EN ISO 17892-4 sind wie in der nachfolgenden Tabelle aufgeführt zu bewerten.

Drahan	Ton	Schluff	Sand	Kies	Steine	k _f ¹⁾	Wn	Bodengruppe
Proben	[%]	[%]	[%]	[%]	[%]	[m/s]	[%]	DIN 18123
KV 1 (581) – EP: 2/3 ungeb. Tragschicht	(6	40	54		3 • 10 ⁻⁴	4,5	GU
KV 2 (582) – EP: 4/5 ungeb. Tragschicht	1	2	17	71		9 • 10-4	3,4	GU
KV 3 (583) – EP: 2/4 Auffüllung		7	47	46		2 • 10-4	4,6	GU
KV 4 (584) – EP: 4/6 Auffüllung	14	48	19	19		3 • 10 ⁻⁸	17,1	U
KV 5 (585) – EP: 1/6 Terrassenlehm	23	29	36	12		4 • 10 ⁻⁹	17,2	U
KV 6 (586) – EP: 1/7 Terrassenschotter	8	24	31	37		2 • 10 ⁻⁷	9,3	SU*

^{1) -} k_f – Wert gemittelt nach Hazen, Beyer, Kaubisch, Seiler, USBR, Seelheim, etc.

Generell ist darauf zu verweisen, dass bei aus RKS-Aufschlüssen entnommenen Bodenproben das Probenmaterial nur bis zur Korngröße der Mittelkiesfraktion sicher erfasst und ausgebracht werden kann. Grobkiesanteile sind lediglich mit gewissen Einschränkungen gewinnbar. Gehalte an Steinen und Blöcken bleiben generell unberücksichtigt. Deren Relevanz ist nach örtlichen Erfahrungen abzuschätzen.

Bodenproben aus den Aufbrüchen/Handschürfen (Straßenoberbau) hingegen können nahezu über das gesamte Kornspektrum erfasst werden. Lediglich Blöcke bleiben unberücksichtigt.

Wie die Tabelle zeigt, weist die **ungebundene Tragschicht** einem Wassergehalt von 3,4 ... 4,5 % auf, was für diese Schicht unter dem gebundenen Straßenoberbau typisch ist. Der ermittelte Feinkornanteil schwankte zischen 6 M-% und 12 M-%, d.h. der Grenzwert für eingebaute ungebundene Tragschichten gemäß ZTV SoB-StB 20 von ≤ 7 M-% wird teilweise überschritten. In der Anlage 3.1-Blatt 1 wurde zu Übersichtszwecken die Grenzlinien für eine Frostschutzschicht 0/45 mm nach ZTV SoB-StB 20 angegeben, um die schwankende Körnung in der ungebundenen Tragschicht zu visualisieren.

2.3.2 Abfall

gebundener Straßenoberbau (Asphalt)

Die nachfolgende Tabelle vergleicht die Befunde vom Prüfbericht des analytischen Labors mit den Grenzwerten der Zuordnung in Verwertungsklassen nach RuVA-StB 01 (2005).

			Gren	zwerte nach R	uVA-StB 01/05
	Parameter	Dim.	Α	В	С
Σ EPA P	AK	mg/kg	≤ 25	> 25	
Phenolin	dex	mg/l	≤ 0,1 ≤ 0,1		> 0,1
			Ana	lytik	7
Probe Nr.:	Proben	Labor-Nr.:	PAK Pheno [mg/kg] index [m		Zuordnung zu Verwertungsklassen nach RuVA 01/05
SD 1	1/1 + 1/2 + 2/1 + 3/1 + 3/2 + 3/3 + 4/1 + 4/2 + 5/1 + 5/2 + 6/1 + 6/2 + 6/3	123143065	107	< 0,01	В
SD 2	3/4 (auffälliger Geruch)	123143066	6.720	0,01	В
SD 3	4/3a/b (Fräsgut)	123143067	1.480	< 0,01	В

gebundener Straßenoberbau (Beton)

Am Beton des lokal vorkommenden Betons im gebundenen Straßenoberbaus wurden Untersuchungen nach Ersatzbaustoffverordnung EBV, Anlage 1, Tabelle 1 durchgeführt.

Um die atmosphärischen Verhältnisse der Baustellenbedingungen im Labor simulieren zu können, wurden zusätzlich zur Bestimmung der Leitfähigkeit und des pH-Wertes die aufbereitete, d.h. frisch gebrochene Betonprobe, künstlich mit Kohlendioxid versetzt.

Die nachfolgende Tabelle vergleicht die Befunde It. Prüfbericht des analytischen Labors mit den Grenzwerten der Zuordnung nach dem betreffenden Regelwerk.

Bscht. 1		Beton			Labor-Nr.: 123143106		
Einzelproben: 1/3							
Parame	eter	Einheit	Analytik	RC-1	RC-2	RC-3	
pH-Wert 1) m	nit CO ₂ -Begasung		5,4	0 40	0 40	6 42	
pH-Wert 1)			11,7	6 – 13	6 – 13	6 – 13	
el. Leitfähigkeit 2) m	nit CO ₂ -Begasung	μS/cm	602	2.500	2 200	10.000	
el. Leitfähigkeit 2)		μS/cm	1.320	2.500	3.200	10.000	
Sulfat		mg/l	92	600	1.000	3.500	
PAK ₁₅ ³⁾		μg/l	0,250	4,0	8,0	25	
PAK ₁₆ ⁴⁾		mg/kg	0,380	10	15	20	
Chrom _{gesamt}		μg/l	6	150	440	900	
Kupfer		μg/l	< 1	110	250	500	
Vanadium	120	700	1.350				
Gesamtbewertu	ng / Materialw	erte	RC-1 na	ich EBV, A	nlage 1, T	abelle 1	

Auffüllungen / natürlich gewachsene Böden nach LAGA TR Boden

Fußnoten entsprechend Erläuterungen in EBV, Anlage 1, Tabelle 1

labortechnisch nicht bestimmbar

n.b.

Bei dem zu erwartenden Bodenaushub wurde von einer Verwertung im Rahmen bodenähnlicher Anwendungen ausgegangen und als Prüfprogramm vertragsgemäß die LAGA TR Boden 11/2004, Parameterumfang Tabelle II.1.2-1 (Mindestuntersuchungsprogramm auf unspezifischen Verdacht) ausgeführt.

Die nachfolgenden Tabellen vergleichen die Befunde It. Prüfbericht des analytischen Labors mit den Grenzwerten der Zuordnung in Einbauklassen [Z] nach LAGA TR Boden, Tabellen II.1.2-2 und II.1.2-3 (Boden, Feststoff + Eluat).

Bod 1	ungeb. 1	Γragschichten	/ Packlager	/ Kiessand	Labor-Nr.: 1	123143905
Einzelproben: 1/4a/b	+ 2/2a/b +	· 2/3a/b + 2/4a	/b + 4/a/b + 4	/5a/b + 5/4a/b	+ 6/4a/b + 6/	5a/b
Laborbefund nach LAGA – TR Boden, 1	abelle II.1	.2-1			n Einbauklas llen II.1.2-2 +	
		Feststoff	prüfungen (1	rs)		
Parameter	Dim.	Analytik	Z 0 1)	z	1	Z 2
Arsen	mg/kg	23,6	10	4	5	150
Blei	mg/kg	11	40	2	10	700
Cadmium	mg/kg	< 0,2	0,4	;	3	10
Chrom _{gesamt}	mg/kg	18	30	18	80	600
Kupfer	mg/kg	24	20	1:	20	400
Nickel	mg/kg	14	15	1:	50	500
Quecksilber	mg/kg	0,10	0,1	1	,5	5
Zink	mg/kg	31	60	4:	50	1.500
TOC	Ma-%	0,2	0,5 (1,0) 2)	1	,5	5
EOX	mg/kg	g < 1,0 1 3 ³⁾				
$KW\text{-Index},\ C_{10}-C_{40}$	mg/kg	< 40		600		2.000
$KW\text{-Index},\ C_{10}-C_{22}$	mg/kg	< 40	100	300		1.000
Σ EPA PAK	mg/kg	n.b.	3	3 [Z 1.1] ⁴⁾	9 [Z 1.2] ⁴⁾	30
Benzo[a]pyren	mg/kg	< 0,02	0,3	0	,9	3
		Eluatpr	üfungen (EL)		
Parameter	Dim.	Analytik	Z 0	Z 1.1	Z 1.2	Z 2
pH-Wert		9,7	6,5-9,5	6,5-9,5	6,0-12	5,5-12
el. Leitfähigkeit	μS/cm	124	250	250	1.500	2.000
Chlorid	mg/l	5,9	30	30	50	100
Sulfat	mg/l	13	20	20	50	200
Arsen	μg/l	62	14	14	20	60 ⁵⁾
Blei	μg/l	< 1	40	40	80	200
Cadmium	μg/l	< 0,3	1,5	1,5	3	6
Chrom _{gesamt}	μ g /l	1	12,5	12,5	25	60
Kupfer	μg/l	< 5	20	20	60	100
Nickel	μg/l	< 1	15	15	20	70
Quecksilber	μ g /l	< 0,2	< 0,5	< 0,5	1	2
Zink	<u>μ</u> g/l	< 10	150	150	200	600
Gesamtbewertun	g / Einba	auklasse	> 7	Z 2 nach L	AGA – Bod	en

Kommentar: maßgebende Parameter: Arsen in EL

n.b. - labortechnisch nicht bestimmbar

¹⁾ maximale Feststoffgehalte für Boden "Sand"

²⁾ Bei C: N - Verhältnis > 25 beträgt der Zuordnungswert 1 Masse-%

³⁾ bei Überschreitung ist die Ursache zu prüfen

 $^{^{4)}}$ Bodenmaterial > 3 / \leq 9 mg/kg darf nur in Gebieten mit hydrogeologisch günstigen Deckschichten eingebaut werden

 $^{^{5)}\,\}mbox{Bei}$ natürlichen Böden in Ausnahmefällen bis 120 $\mu\mbox{g}/\mbox{ I}$

Reg.-Nr.: 08371 – 118 Große Kreisstadt Glauchau - WAD GmbH \ Glauchau, Pestalozzistraße Proj.-Nr.: 16788 / 40139 ENB AW-Kanal und Straßenausbau \ Baugrund- und Abfalluntersuchung

Seite 18 von 44

Bod 1 ungeb. Tragschichten / Packlager / Kiessand Labor-Nr.: 123143905 Einzelproben: 1/4a/b + 2/2a/b + 2/3a/b + 2/4a/b + 4/a/b + 4/5a/b + 5/4a/b + 6/4a/b + 6/5a/b Zuordnungswerte [Z] von Deponieklassen nach DepV Laborbefund nach Deponieverordnung Nr. DK I Dim. **Analytik** DK₀ DK II DK III Rekulti-**Parameter** Geologische vierungs-**Barriere** schicht 1.01 Ma-% Glühverlust 1,9 ≤ 3 ≤ 3 ≤ 3 ≤ 5 ≤ 10 1.02 Ma-% TOC 0.2 ≤ 3 --≤ 1 ≤ 1 ≤ 1 ≤ 6 2.01 mg/kg **BTEX** ≤ 1 ≤ 6 mg/kg 0,005 ≤ 1 2.02 **PCB** \leq 0,02 2.03 mg/kg < 40 KW, $C_{10} - C_{40}$ ≤ 100 ≤ 500 --2.04 mg/kg Σ EPA PAK n.b. ≤ 1 ≤ 30 ≤ 5 2.05 Benzo[a]pyren mg/kg < 0,05 ------≤ 0,6 2.06 Säureneutralimmol/ sationskapazität kg 2.07 extrahierbare Ma-% 0,31 $\leq 0,1$ $\leq 0,4$ ≤ 0,8 ≤ 4 lipophile Stoffe 2.08 mg/kg 11 ≤ 140 Blei 2.09 Cadmium mg/kg < 0,2 ----------≤ 1,0 2.10 mg/kg 18 Chromgesamt --------≤ 120 2.11 mg/kg Kupfer 24 ≤ 80 2.12 Nickel mg/kg 14 ≤ 100 2.13 Quecksilber 0,10 mg/kg ------≤ 1,0 2.14 Zink mg/kg 31 ≤ 300 pH-Wert 3.01 8,8 6,5-9 5,5-13 5,5-13 5,5-13 4-13 ≤ 6,5-9 3.02 DOC mg/l 2,0 --≤ 50 ≤ 50 ≤ 80 ≤ 100 3.03 Phenole mg/l < 0,01 ≤ 0,05 ≤ 0,2 ≤ 50 ≤ 100 \leq 0,1 3.04 Arsen mg/l 0,062 \leq 0,01 ≤ 0,05 ≤ 0,2 ≤ 0,2 ≤ 2,5 ≤ 0,01 3.05 Blei mg/l < 0,001 ≤ 0,02 ≤ 0.05 ≤ 0,2 ≤ 1 ≤ 5 ≤ 0.04 3.06 Cadmium mg/l < 0.0003 ≤ 0,002 ≤ 0,004 ≤ 0,1 ≤ 0,002 ≤ 0,05 ≤ 0,5 3.07 < 0,005 ≤ 10 ≤ 0,05 Kupfer mg/l ≤ 1 ≤ 5 ≤ 0,05 ≤ 0,2 3.08 Nickel mg/l < 0,001 ≤ 0.04 $\leq 0,04$ ≤ 0,2 ≤ 1 ≤ 4 \leq 0,05 3.09 Quecksilber mg/l < 0,0002 \leq 0,0002 ≤ 0,001 $\leq 0,005$ ≤ 0,02 ≤ 0,2 ≤ 0,0002 3.10 Zink mg/l < 0,01 ≤ 5 **≤ 20** ≤ 0,1 $\leq 0,1$ ≤ 0,4 ≤ 2 3.11 Chlorid mg/l 5,9 ≤ 10 ≤ 80 ≤ 1.500 ≤ 1.500 ≤ 2.500 ≤ 10 3.12 mg/l Sulfat 13 ≤ 50 ≤ 100 ≤ 2.000 ≤ 2.000 ≤ 5.000 ≤ 50 3.13 mg/l Cyanidfrei < 0,005 \leq 0,01 ≤ 0,01 ≤ 0,1 ≤ 0,5 ≤ 1 --3.14 mg/l Fluorid < 2,0 ≤ 1 ≤ 5 ≤ 15 ≤ 50 3.15 --**Barium** mg/l 0,002 --≤ 2 ≤ 5 ≤ 10 ≤ 30 3.16 mg/l 0,001 ≤ 0,03 Chromgesamt $\leq 0,05$ ≤ 0,3 ≤ 1 ≤ 7 3.17 Molybdän mg/l 0,005 $\leq 0,05$ ≤ 0,3 ≤ 1 ≤ 3 3.18a Antimon mg/l 0,005 ≤ 0,006 ≤ 0,03 ≤ 0,07 ≤ 0,5 -mg/l 3.19 Selen 0,001 ≤ 0,03 $\leq 0,05$ ≤ 0,7 $\leq 0,01$ 3.20 Gesamtgehalt an mg/l < 150 400 400 3000 6000 10000 gelösten Stoffen 3.21 el. Leitfähigkeit ≤ **500** μS/cm 459 Deponieklasse DK I nach Deponieverordnung (DepV) extrahierbare lipophile Stoffe, Arsen und Fluorid im Eluat Maßgebende Parameter: n. b. = nicht bestimmbar n. n. = nicht nachweisbar < x,x = kleiner Bestimmungsgrenze n. a. = nicht analysiert

Bod 2		Auffüllung	gen (bindig)		Labor-Nr.: 1	123144182		
Einzelproben: 1/5a/b	+ 3/5a/b +	· 3/7a/b + 4/6a	/b					
Laborbefund nach LAGA – TR Boden, 1	abelle II.1	.2-1	Zuordnungswerte [Z] von Einbauklassen nach LAGA – TR Boden, Tabellen II.1.2-2 + II.1.2-3					
		Feststoff	ffprüfungen (TS)					
Parameter	Dim.	Analytik	Z 0 1)	Z	Z 1			
Arsen	mg/kg	30,3	15	4	1 5	150		
Blei	mg/kg	67	60	2	10	700		
Cadmium	mg/kg	1,8	1		3	10		
Chrom _{gesamt}	mg/kg	20	60	1	80	600		
Kupfer	mg/kg	30	40	1	20	400		
Nickel	mg/kg	24	50	1	50	500		
Quecksilber	mg/kg	0,32	0,5	1	,5	5		
Zink	mg/kg	337	150	4	50	1.500		
TOC	Ma-%	1,9	0,5 (1,0) ²⁾	1	5			
EOX	mg/kg	< 1,0	1	3 ³⁾		10		
KW-Index, $C_{10} - C_{40}$	mg/kg	< 40		600		2.000		
$KW\text{-Index},\ C_{10}-C_{22}$	mg/kg	45	100	300		1.000		
Σ EPA PAK	mg/kg	522	3	3 [Z 1.1] ⁴⁾	9 [Z 1.2] ⁴⁾	30		
Benzo[a]pyren	mg/kg	26	0,3	C	,9	3		
		Eluatpr	rüfungen (EL)					
Parameter	Dim.	Analytik	Z 0	Z 1.1	Z 1.2	Z 2		
pH-Wert		9,0	6,5-9,5	6,5-9,5	6,0-12	5,5-12		
el. Leitfähigkeit	μS/cm	209	250	250	1.500	2.000		
Chlorid	mg/l	21	30	30	50	100		
Sulfat	mg/l	12	20	20	50	200		
Arsen	μg/l	18	14	14	20	60 ⁵⁾		
Blei	μg/l	< 1	40	40	80	200		
Cadmium	μg/l	< 0,3	1,5	1,5	3	6		
Chrom _{gesamt}	μ g /l	< 1	12,5	12,5	25	60		
Kupfer	μ g /l	< 5	20	20	60	100		
Nickel	μg/l	< 1	15	15	20	70		
Quecksilber	μ g /l	< 0,2	< 0,5	< 0,5	1	2		
Zink	<u>μ</u> g/l	< 10	150	150	200	600		
Gesamtbewertun	> Z 2 nach LAGA – Boden							

 $\textbf{Kommentar:} \ \mathsf{ma\&gebende} \ \mathsf{Parameter:} \ \Sigma \ \mathsf{EPA} \ \mathsf{PAK}, \ \mathsf{Benzo[a]} \mathsf{pyren} \ \mathsf{in} \ \mathsf{TS}$

¹⁾ maximale Feststoffgehalte für Boden "Lehm / Schluff"

²⁾ Bei C: N - Verhältnis > 25 beträgt der Zuordnungswert 1 Masse-%

³⁾ bei Überschreitung ist die Ursache zu prüfen

 $^{^{4)}}$ Bodenmaterial > 3 / \leq 9 mg/kg darf nur in Gebieten mit hydrogeologisch günstigen Deckschichten eingebaut werden n.b. – labortechnisch nicht bestimmbar

 $^{^{5)}\,\}mbox{Bei natürlichen B\"{o}den in Ausnahmef\"{a}llen bis 120~\mu\mbox{g/}\,\mbox{I}}$

Reg.-Nr.: 08371 – 118 Große Kreisstadt Glauchau - WAD GmbH \ Glauchau, Pestalozzistraße Proj.-Nr.: 16788 / 40139 ENB AW-Kanal und Straßenausbau \ Baugrund- und Abfalluntersuchung

Seite 20 von 44

Bod 2 Auffüllungen (bindig) Labor-Nr.: 123144182 Einzelproben: 1/5a/b + 3/5a/b + 3/7a/b + 4/6a/b Zuordnungswerte [Z] von Deponieklassen nach DepV Laborbefund nach Deponieverordnung Nr. DK I DK II Analytik DK₀ DK III Rekulti-**Parameter** Dim. Geologische vierungs-**Barriere** schicht 1.01 Ma-% Glühverlust 3,3 ≤ 3 ≤ 3 ≤ 3 ≤ 5 ≤ 10 1.02 Ma-% TOC 1.9 ≤ 1 ≤ 1 ≤ 1 ≤ 3 ≤ 6 2.01 mg/kg **BTEX** ≤ 1 ≤ 6 mg/kg 2.02 **PCB** ≤ 0,02 0,005 ≤ 1 2.03 mg/kg 45 KW, $C_{10} - C_{40}$ ≤ 100 ≤ 500 --2.04 mg/kg 522 Σ EPA PAK ≤ 1 ≤ 30 ≤ 5 2.05 mg/kg Benzo[a]pyren 26 --≤ 0,6 2.06 Säureneutralimmol/ sationskapazität kg 2.07 extrahierbare Ma-% 0,13 $\leq 0,1$ $\leq 0,4$ ≤ 0,8 ≤ 4 lipophile Stoffe 2.08 mg/kg 67 ≤ 140 Blei 2.09 Cadmium mg/kg 1,8 ----------≤ 1,0 2.10 mg/kg Chromgesamt 20 --------≤ 120 2.11 mg/kg Kupfer 30 ≤ 80 2.12 Nickel mg/kg 24 ≤ 100 2.13 Quecksilber mg/kg 0,32 ------≤ 1,0 2.14 Zink mg/kg 337 ≤ 300 pH-Wert 3.01 9,0 6,5-9 5,5-13 5,5-13 5,5-13 4-13 ≤ 6,5-9 3.02 DOC mg/l 1,9 --≤ 50 ≤ 50 ≤ 80 ≤ 100 3.03 Phenole mg/l < 0,01 ≤ 0,05 ≤ 0,2 ≤ 50 ≤ 100 \leq 0,1 3.04 Arsen mg/l 0,018 \leq 0,01 ≤ 0.05 ≤ 0,2 ≤ 0,2 ≤ 2,5 ≤ 0,01 3.05 Blei mg/l < 0,001 ≤ 0,02 ≤ 0,05 ≤ 0,2 ≤ 1 ≤ 5 ≤ 0.04 3.06 Cadmium mq/l < 0.0003 ≤ 0,002 ≤ 0,004 ≤ 0,1 ≤ 0,002 ≤ 0,05 ≤ 0,5 3.07 < 0,005 Kupfer mg/l ≤ 1 ≤ 5 ≤ 10 ≤ 0,05 ≤ 0,05 ≤ 0,2 3.08 Nickel mg/l < 0,001 ≤ 0.04 $\leq 0,04$ ≤ 0,2 ≤ 1 ≤ 4 \leq 0,05 3.09 < 0,0002 Quecksilber mg/l $\leq 0,0002$ ≤ 0,001 $\leq 0,005$ ≤ 0,02 ≤ 0,2 ≤ 0,0002 3.10 Zink mg/l < 0,01 ≤ 5 **≤ 20** ≤ 0,1 $\leq 0,1$ ≤ 0,4 ≤ 2 3.11 Chlorid mg/l 21 ≤ 10 ≤ 80 ≤ 1.500 ≤ 1.500 ≤ 2.500 ≤ 10 3.12 mg/l Sulfat 12 ≤ 50 ≤ 100 ≤ 2.000 ≤ 2.000 ≤ 5.000 ≤ 50 3.13 mg/l Cyanidfrei < 0,005 \leq 0,01 ≤ 0,01 ≤ 0,1 ≤ 0,5 ≤ 1 --3.14 mg/l Fluorid < 2,0 ≤ 1 ≤ 5 ≤ 15 ≤ 50 3.15 **Barium** mg/l 0,006 --≤ 2 ≤ 5 ≤ 10 ≤ 30 3.16 mg/l < 0,001 ≤ 0,03 Chromgesamt $\leq 0,05$ ≤ 0,3 ≤ 1 ≤ 7 3.17 Molybdän mg/l 0,012 $\leq 0,05$ ≤ 0,3 ≤ 1 ≤ 3 3.18a Antimon mg/l 0,003 ≤ 0,006 ≤ 0,03 ≤ 0,07 ≤ 0,5 -mg/l 3.19 Selen 0,001 ≤ 0,03 $\leq 0,05$ ≤ 0,7 $\leq 0,01$ 3.20 Gesamtgehalt an mg/l < 150 400 400 3000 6000 10000 gelösten Stoffen 3.21 el. Leitfähigkeit ≤ **500** μS/cm 209 Deponieklasse DK II nach Deponieverordnung (DepV) Glühverlust und TOC im Feststoff Maßgebende Parameter: n. b. = nicht bestimmbar n. n. = nicht nachweisbar < x,x = kleiner Bestimmungsgrenze n. a. = nicht analysiert

Bod 3		Auffüllunger	n (nichtbindiç	g)	Labor-Nr.: 1	23143863
Einzelproben: 3/6a/b				<u>.</u>		
Laborbefund nach LAGA – TR Boden, T	abelle II.1	.2-1			n Einbauklas llen II.1.2-2 +	
		Feststoff	prüfungen (1	S)		
Parameter	Dim.	Analytik	Z 0 1)	Z	1	Z 2
Arsen	mg/kg	76,2	10		15	150
Blei	mg/kg	342	40	2	10	700
Cadmium	mg/kg	13,9	0,4		3	10
Chrom _{gesamt}	mg/kg	32	30	1	80	600
Kupfer	mg/kg	81	20	1:	20	400
Nickel	mg/kg	82	15	1:	50	500
Quecksilber	mg/kg	0,87	0,1	1	,5	5
Zink	mg/kg	2.110	60	4	50	1.500
TOC	Ma-%	14	0,5 (1,0) 2)	1	,5	5
EOX	mg/kg	< 1,0	1	3	10	
KW-Index, C ₁₀ – C ₄₀	mg/kg	< 40		600		2.000
KW-Index, C ₁₀ – C ₂₂	mg/kg	< 40	100	300		1.000
Σ EPA PAK	mg/kg	2,24	3	3 [Z 1.1] ⁴⁾	9 [Z 1.2] ⁴⁾	30
Benzo[a]pyren	mg/kg	0,14	0,3	0	,9	3
		Eluatpi	rüfungen (EL)		
Parameter	Dim.	Analytik	Z 0	Z 1.1	Z 1.2	Z 2
pH-Wert		8,4	6,5-9,5	6,5-9,5	6,0-12	5,5-12
el. Leitfähigkeit	μS/cm	330	250	250	1.500	2.000
Chlorid	mg/l	54	30	30	50	100
Sulfat	mg/l	23	20	20	50	200
Arsen	μg/l	31	14	14	20	60 ⁵⁾
Blei	μg/l	1	40	40	80	200
Cadmium	μg/l	< 0,3	1,5	1,5	3	6
Chrom _{gesamt}	μg/l	< 1	12,5	12,5	25	60
Kupfer	μg/l	< 5	20	20	60	100
Nickel	μg/l	< 1	15	15	20	70
Quecksilber	<u>. υ</u> μg/l	< 0,2	< 0,5	< 0,5	1	2
Zink	μ g /l	20	150	150	200	600
Gesamtbewertun	g / Einba	auklasse	> 7	Z 2 nach L	AGA – Bod	en

Kommentar: maßgebende Parameter: Cadmium, Zink, TOC in TS

n.b. - labortechnisch nicht bestimmbar

¹⁾ maximale Feststoffgehalte für Boden "Sand"

²⁾ Bei C: N - Verhältnis > 25 beträgt der Zuordnungswert 1 Masse-%

³⁾ bei Überschreitung ist die Ursache zu prüfen

 $^{^{4)}}$ Bodenmaterial > 3 / \leq 9 mg/kg darf nur in Gebieten mit hydrogeologisch günstigen Deckschichten eingebaut werden

 $^{^{5)}}$ Bei natürlichen Böden in Ausnahmefällen bis 120 $\mu g/I$

Reg.-Nr.: 08371 – 118 Große Kreisstadt Glauchau - WAD GmbH \ Glauchau, Pestalozzistraße ENB AW-Kanal und Straßenausbau \ Baugrund- und Abfalluntersuchung

Bod 3	3		Auffüllu	ngen (nich	tbindig)		Labo	r-Nr.: 12	3143863	
Einze	elproben: 3/6a/b									
Labor	befund nach Depo	nieverord	lnung	Zuordnung	swerte [Z	von Depo	nieklasse	n nach D	epV	
Nr.	Parameter	Dim.	Analytik	Geolo- gische Barriere	DK 0	DKI	DK II	DK III	Rekulti- vierungs- schicht	
1.01	Glühverlust	Ma-%	17,8	≤ 3	≤ 3	≤ 3	≤ 5	≤ 10		
1.02	TOC	Ma-%	14	≤ 1	≤ 1	≤ 1	≤ 3	≤ 6		
2.01	BTEX	mg/kg		≤ 1	≤ 6					
2.02	PCB	mg/kg	0,020	≤ 0,02	≤ 1					
2.03	KW, C ₁₀ - C ₄₀	mg/kg	< 40	≤ 100	≤ 500					
2.04	Σ EPA PAK	mg/kg	2,10	≤ 1	≤ 30				≤ 5	
2.05	Benzo[a]pyren	mg/kg	0,14						≤ 0,6	
2.06	Säureneutrali- sationskapazität	mmol/ kg								
2.07	extrahierbare lipophile Stoffe	Ma-%	< 0,02		≤ 0,1	≤ 0,4	≤ 0,8	≤ 4		
2.08	Blei	mg/kg	342						≤ 140	
2.09	Cadmium	mg/kg	13,9						≤ 1,0	
2.10	Chrom _{gesamt}	mg/kg	32						≤ 120	
2.11	Kupfer	mg/kg	81						≤ 80	
2.12	Nickel	mg/kg	82						≤ 100	
2.13	Quecksilber	mg/kg	0,87						≤ 1,0	
2.14	Zink	mg/kg	2.110						≤ 300	
3.01	pH-Wert		8,4	6,5-9	5,5-13	5,5-13	5,5-13	4-13	≤ 6,5-9	
3.02	DOC	mg/l	1,3		≤ 50	≤ 50	≤ 80	≤ 100		
3.03	Phenole	mg/l	< 0,01	≤ 0,05	≤ 0,1	≤ 0,2	≤ 50	≤ 100		
3.04	Arsen	mg/l	0,031	≤ 0,01	≤ 0,05	≤ 0,2	≤ 0,2	≤ 2,5	≤ 0,01	
3.05	Blei	mg/l	0,001	≤ 0,02	≤ 0,05	≤ 0,2	≤ 1	≤ 5	≤ 0,04	
3.06	Cadmium	mg/l	< 0,0003	≤ 0,002	≤ 0,004	≤ 0,05	≤ 0,1	≤ 0,5	≤ 0,002	
3.07	Kupfer	mg/l	< 0,005	≤ 0,05	≤ 0,2	≤ 1	≤ 5	≤ 10	≤ 0,05	
3.08	Nickel	mg/l	< 0,001	≤ 0,04	≤ 0,04	≤ 0,2	≤ 1	≤ 4	≤ 0,05	
3.09	Quecksilber	mg/l	< 0,0002	≤ 0,0002	≤ 0,001	≤ 0,005	≤ 0,02	≤ 0,2	≤ 0,0002	
3.10	Zink	mg/l	0,02	≤ 0,1	≤ 0,4	≤ 2	≤ 5	≤ 20	≤ 0,1	
3.11	Chlorid	mg/l	54	≤ 10	≤ 80	≤ 1.500	≤ 1.500	≤ 2.500	≤ 10	
3.12	Sulfat	mg/l	23	≤ 50	≤ 100	≤ 2.000	≤ 2.000	≤ 5.000	≤ 50	
3.13	Cyanid _{frei}	mg/l	< 0,005	≤ 0,01	≤ 0,01	≤ 0,1	≤ 0,5	≤ 1		
3.14	Fluorid	mg/l	< 2,0		≤ 1	≤ 5	≤ 15	≤ 50		
3.15	Barium	mg/l	0,026		≤ 2	≤ 5	≤ 10	≤ 30		
3.16	Chrom _{gesamt}	mg/l	< 0,001		≤ 0,05	≤ 0,3	≤ 1	≤ 7	≤ 0,03	
3.17	Molybdän	mg/l	0,043		≤ 0,05	≤ 0,3	≤ 1	≤ 3		
3.18a		mg/l	0,017		≤ 0,006	≤ 0,03	≤ 0,07	≤ 0,5		
3.19	Selen	mg/l	< 0,001		≤ 0,01	≤ 0,03	≤ 0,05	≤ 0,7		
3.20	Gesamtgehalt an gelösten Stoffen	mg/l	190	190 4 00 400 3000 6000 10000						
3.21	el. Leitfähigkeit	μS/cm	330						≤ 500	
Deponieklasse > DK III nach Deponieverordnung (DepV)										
Maßge	ebende Parameter:		Glühverlust	und TOC						
n. b. = nic	cht bestimmbar	n. n. = nicht n	achweisbar	< x,x =	kleiner Bestimr	nungsgrenze		n.a. = nicht	analysiert	

Bod 4		natürlich gew	achsene Böd	len	Labor-Nr.: 1	123145529		
Einzelproben: 1/6a/b +	1/7a/b + 2/5	5a/b + 2/6a/b + 2	2/7a/b + 3/8a/b	+ 4/7a/b + 5/5a	a/b + 5/6a/b + 6	/6a/b + 6/7a/b		
Laborbefund nach LAGA – TR Boden, T	abelle II.1	.2-1	Zuordnungswerte [Z] von Einbauklassen nach LAGA – TR Boden, Tabellen II.1.2-2 + II.1.2-3					
		Feststoff	prüfungen (T	rs)				
Parameter	Dim.	Analytik	Z 0 1)	Z	Z 2			
Arsen	mg/kg	14,6	15	4	l 5	150		
Blei	mg/kg	16	60	2	10	700		
Cadmium	mg/kg	< 0,2	1	,	3	10		
Chrom _{gesamt}	mg/kg	31	60	18	80	600		
Kupfer	mg/kg	17	40	1:	20	400		
Nickel	mg/kg	22	50	1:	50	500		
Quecksilber	mg/kg	< 0,07	0,5	1	,5	5		
Zink	mg/kg	54	150	4	50	1.500		
TOC	Ma-%	0,1	1 0,5 (1,0) ²⁾ 1,5					
EOX	mg/kg	< 1,0	1	3	10			
KW-Index, C ₁₀ – C ₄₀	mg/kg	< 40		600		2.000		
KW-Index, C ₁₀ – C ₂₂	mg/kg	< 40	100	300		1.000		
Σ EPA PAK	mg/kg	n.b.	3	3 [Z 1.1] ⁴⁾	9 [Z 1.2] ⁴⁾	30		
Benzo[a]pyren	mg/kg	n.b.	0,3	0	,9	3		
		Eluatpr	üfungen (EL)				
Parameter	Dim.	Analytik	Z 0	Z 1.1	Z 1.2	Z 2		
pH-Wert		7,3	6,5-9,5	6,5-9,5	6,0-12	5,5-12		
el. Leitfähigkeit	μS/cm	108	250	250	1.500	2.000		
Chlorid	mg/l	16	30	30	50	100		
Sulfat	mg/l	15	20	20	50	200		
Arsen	μ g /l	< 1	14	14	20	60 ⁵⁾		
Blei	μg/l	< 1	40	40	80	200		
Cadmium	μg/l	< 0,3	1,5	1,5	3	6		
Chrom _{gesamt}	μg/l	< 1	12,5	12,5	25	60		
Kupfer	<u>μ</u> g/l	< 5	20	20	60	100		
Nickel	<u>. υ</u> μg/l	< 1	15	15	20	70		
Quecksilber	<u> σ</u> μg/l	< 0,2	< 0,5	< 0,5	1	2		
Zink	μg/l	< 10	150	150	200	600		
Gesamtbewertun	g / Einba	auklasse	Z 0 nach LAGA – Boden					

Kommentar: ---

 $^{^{1)}}$ maximale Feststoffgehalte für Boden "Lehm / Schluff"

²⁾ Bei C: N - Verhältnis > 25 beträgt der Zuordnungswert 1 Masse-%

³⁾ bei Überschreitung ist die Ursache zu prüfen

⁴⁾ Boden material > 3 / ≤ 9 mg/kg darf nur in Gebieten mit hydrogeologisch günstigen Deckschichten eingebaut werden

 $^{^{5)}}$ Bei natürlichen Böden in Ausnahmefällen bis 120 $\mu g/I$

n.b. - labortechnisch nicht bestimmbar

Auffüllungen / natürlich gewachsene Böden nach Ersatzbaustoffverordnung EBV

Mit dem 01.08.2023 tritt im Abfallrecht die "Verordnung zur Einführung einer Ersatzbaustoffverordnung, zur Neufassung der Bundes-Bodenschutz- und Abfallverordnung und zur Änderung der Deponieverordnung und der Gewerbeabfallverordnung" (sogenannte Mantelverordnung) in Kraft und ersetzt die Regelungen der LAGA (LAGA M20) sowie zahlreiche länderspezifische Regelungen. Bei Ausschreibung und Umsetzung von Baumaßnahmen nach dem 01.08.2023 ist mit Erfordernis baubegleitenden Probenahmen am Haufwerk und Analysen nach Mantelverordnung zu rechnen.

dem 01.08.2023 ist mit Erfordernis baubegleitenden Probenahmen am Haufwerk und Analysen nach Mantelverordnung zu rechnen. Da im Zuge der Baumaßnahme nach dem oben genannten "Stichtag" Abfall anfällt, wurden vertragsgemäß an den Proben auch Untersuchungen nach Ersatzbaustoffverordnung EBV, Anlage 1, Tabelle 3 durchgeführt. Dabei wurden aus den gleichen Einzelproben, die bereits nach LAGA TR Boden untersucht wurden, weitere Mischproben hergestellt und analysiert. In den nachfolgenden Tabellen werden die Ergebnisse der Laborprüfberichte des analytischen Labors mit den Grenzwerten der Zuordnung nach den betreffenden Regelwerken ausgewertet:

Bod 5 ungeb. Tragschichten / Packlager / Kiessand Labor-Nr.: 123143905 Einzelproben: 1/4a/b + 2/2a/b + 2/3a/b + 2/4a/b + 4/a/b + 4/5a/b + 5/4a/b + 6/4a/b + 6/5a/b BM-0 BM-0* BM-F0* BM-F3 BM-F1 BM-F2 BG-0* 3) BG-F0* BG-0 BG-F1 BG-F2 BG-F3 **Parameter Einheit Analytik** Feststoff Ma.-% Trockenmasse Mineral. Fremd-Feststoff Vol.-% ≤ 50 bis 10 bis 10 bis 50 bis 50 bis 50 bis 50 bestandteile 1 7) 1 ⁷⁾ TOC Feststoff Ma-% 0,2 5 5 5 5 EOX 11) Feststoff < 1,0 1 1 mg/kg KW, C₁₀ - C₂₂ Feststoff < 40 300 300 300 300 1.000 mg/kg KW, $C_{10} - C_{40}$ Feststoff < 40 600 600 600 600 2.000 mg/kg 6,5-9,5 pH-Wert Eluat 8,8 6,5-9,5 6,5-9,5 5,5-12,0 el. Leitfähigkeit 4) 459 350 350 500 500 2.000 Eluat μ S/cm 48 250⁵⁾ 250 5) 250 5) 450 1.000 Sulfat Eluat mg/l 450 150 Feststoff 23,6 10 20 40 40 40 mg/kg Arsen 8 69 12 20 85 100 Eluat μg/l (13)Feststoff 11 40 140 140 140 140 700 mg/kg Blei 23 Eluat 18 35 90 250 470 μg/l (43)< 0,2 0,4 1⁶⁾ 2 2 2 10 Feststoff mg/kg Cadmium 2 3 Eluat μg/l < 0,3 3 10 15 (4) 120 Feststoff 18 30 120 120 120 600 mg/kg Chromgesamt 10 Eluat 11 15 150 290 530 μg/l (19)24 20 80 80 80 80 320 Feststoff mg/kg Kupfer 20 19 Eluat 30 110 170 320 μg/l (41)14 Feststoff 15 100 100 100 100 350 mg/kg Nickel 20 8 30 150 280 Eluat μg/l 30 (31)Quecksilber < 0.07 0,2 0,6 0,6 Feststoff mg/kg 0,6 0,6 5 Quecksilber 12) Eluat μg/l < 0,1 0,1 Thallium 0,5 1,0 2 2 2 7 Feststoff < 0,2 mg/kg 0,2 Thallium 12) < 0,2 Eluat μg/l (0,3)31 60 300 300 1.200 300 Feststoff 300 mg/kg Zink 100 80 150 840 1.600 Eluat μg/l 160 (210)PAK₁₆ 10) Feststoff mg/kg 0,125 3 6 6 9 30 Feststoff < 0,05 0,3 Benzo(a)pyren mg/kg PAK₁₅ 9) Eluat 4,89 0,2 0,3 1.5 3.8 20 μg/l Naphthalin u. Methyln.b. 2 Eluat μg/l naphthaline, gesamt 0.005 0.05 0,10 Feststoff mg/kg PCB₆ und PCB-118 Eluat n.b. 0,01 μg/l BM-F3 / BG-F3 nach EBV, Anlage 1, Tabelle 3 Gesamtbewertung / Materialwerte

Kommentar: maßgebende Parameter: PAK₁₅ im Eluat

^{1) - 12)} Fußnoten entsprechend Erläuterungen in EBV, Anlage 1, Tabelle 3.

n.b. labortechnisch nicht bestimmbar

Reg.-Nr.: 08371 – 118 Proj.-Nr.: 16788 / 40139

Seite 26 von 44

Bod 6		Auffüllungen (bindig) Labor-Nr.: 123144183							3144182
Einzelproben: 1/5a	/b + 3/5a	/b + 3/7a	/b + 4/6a/	b					
Parameter		Einheit	Analytik	BM-0 BG-0	BM-0* BG-0* 3)	BM-F0*		BM-F2 BG-F2	BM-F3 BG-F3
i didiliotoi			,a.y		•	Lehm,	Schluff 2)		•
Trockenmasse	Feststoff	Ma%							
Mineral. Fremd- bestandteile	Feststoff	Vol%	≤ 50	bis 10	bis 10	bis 50	bis 50	bis 50	bis 50
TOC	Feststoff	Ma-%	1,9	1 ⁷⁾	1 ⁷⁾	5	5	5	5
EOX ¹¹⁾	Feststoff	mg/kg	< 1,0	1	1				
KW, C ₁₀ – C ₂₂	Feststoff	mg/kg	< 40		300	300	300	300	1.000
$KW, C_{10} - C_{40}$	Feststoff	mg/kg	45		600	600	600	600	2.000
pH-Wert	Eluat		8,4			6,5-9,5		6,5-9,5	5,5-12,0
el. Leitfähigkeit 4)	Eluat	μS/cm	845		350	350	500	500	2.000
Sulfat	Eluat	mg/l	80	250 ⁵⁾	250 ⁵⁾	250 ⁵⁾	450	450	1.000
A	Feststoff	mg/kg	30,3	20	20	40	40	40	150
Arsen	Eluat	μg/l	4		8 (13)	12	20	85	
DI-:	Feststoff	mg/kg	67	70	140	140	140	140	700
Blei	Eluat	μg/l	< 1		23 (43)	35	90	250	470
On the boar	Feststoff	mg/kg	1,8	1	1 ⁶⁾	2	2	2	10
Cadmium	Eluat	μg/l	< 0,3		2 (4)	3	3	10	15
01	Feststoff	mg/kg	20	60	120	120	120	120	600
Chrom _{gesamt}	Eluat	μg/l	< 1		10 (19)	15	150	290	530
	Feststoff	mg/kg	30	40	80	80	80	80	320
Kupfer	Eluat	μg/l	1		20 (41)	30	110	170	320
	Feststoff	mg/kg	24	50	100	100	100	100	350
Nickel	Eluat	μg/l	< 1		20 (31)	30	30	150	280
Quecksilber	Feststoff	mg/kg	0,26	0,3	0,6	0,6	0,6	0,6	5
Quecksilber 12)	Eluat	μg/l	< 0,1		0,1				
Thallium	Feststoff	mg/kg	< 0,2	1,0	1,0	2	2	2	7
Thallium 12)	Eluat	μg/l	< 0,2		0,2 (0,3)				
-	Feststoff	mg/kg	337	150	300	300	300	300	1.200
Zink	Eluat	μg/l	< 10		100 (210)	150	160	840	1.600
PAK ₁₆ ¹⁰⁾	Feststoff	mg/kg	522	3	6	6	6	9	30
Benzo(a)pyren	Feststoff	mg/kg	26	0,3					
PAK ₁₅ 9)	Eluat	μg/l	2,34		0,2	0,3	1,5	3,8	20
Naphthalin u. Methyl- naphthaline, gesamt	Eluat	μg/l	0,010		2				
PCB ₆ und PCB-118	Feststoff	mg/kg	0,005	0,05	0,10				
. 520 4.14 1 55 1 10	Eluat	μg/l	n.b.		0,01				L
Gesamtbewertung / Materialwerte > BM-F3 / BG-F3 nach EBV, Anla							age 1, Ta	belle 3	

Kommentar: maßgebende Parameter: PAK₁₆ im Feststoff

^{1) - 12)} Fußnoten entsprechend Erläuterungen in EBV, Anlage 1, Tabelle 3.

n.b. labortechnisch nicht bestimmbar

Reg.-Nr.: 08371 – 118 Große Kreisstadt Glauchau - WAD GmbH \ Glauchau, Pestalozzistraße Proj.-Nr.: 16788 / 40139 ENB AW-Kanal und Straßenausbau \ Baugrund- und Abfalluntersuchung

Seite 27 von 44

Bod 6 Auffüllungen (bindig) Labor-Nr.: 123144182 Einzelproben: 1/5a/b + 3/5a/b + 3/7a/b + 4/6a/b Zuordnungswerte [Z] von Deponieklassen nach DepV Laborbefund nach Deponieverordnung Nr. DK I DK II Analytik DK₀ DK III Rekulti-**Parameter** Dim. Geologische vierungs-**Barriere** schicht 1.01 Ma-% Glühverlust 3,3 ≤ 3 ≤ 3 ≤ 3 ≤ 5 ≤ 10 1.02 Ma-% TOC 1.9 ≤ 1 ≤ 1 ≤ 1 ≤ 3 ≤ 6 2.01 mg/kg **BTEX** ≤ 1 ≤ 6 mg/kg 2.02 **PCB** ≤ 0,02 0,005 ≤ 1 2.03 mg/kg 45 KW, $C_{10} - C_{40}$ ≤ 100 ≤ 500 --2.04 mg/kg 522 Σ EPA PAK ≤ 1 ≤ 30 ≤ 5 2.05 Benzo[a]pyren mg/kg 26 --≤ 0,6 2.06 Säureneutralimmol/ sationskapazität kg 2.07 extrahierbare Ma-% 0,13 $\leq 0,1$ $\leq 0,4$ ≤ 0,8 ≤ 4 lipophile Stoffe 2.08 mg/kg 67 ≤ 140 Blei 2.09 Cadmium mg/kg 1,8 ----------≤ 1,0 2.10 mg/kg Chromgesamt 20 --------≤ 120 2.11 Kupfer mg/kg 30 ≤ 80 2.12 Nickel mg/kg 24 ≤ 100 2.13 Quecksilber mg/kg 0,32 ------≤ 1,0 2.14 Zink mg/kg 337 ≤ 300 pH-Wert 3.01 9,0 6,5-9 5,5-13 5,5-13 5,5-13 4-13 ≤ 6,5-9 3.02 DOC mg/l 1,9 --≤ 50 ≤ 50 ≤ 80 ≤ 100 3.03 Phenole mg/l < 0,01 ≤ 0,05 ≤ 0,2 ≤ 50 ≤ 100 \leq 0,1 3.04 Arsen mg/l 0,018 ≤ 0.01 ≤ 0.05 ≤ 0,2 ≤ 0,2 ≤ 2,5 ≤ 0,01 3.05 Blei mg/l < 0,001 ≤ 0,02 ≤ 0,05 ≤ 0,2 ≤ 1 ≤ 5 ≤ 0.04 3.06 Cadmium mq/l < 0.0003 ≤ 0,002 ≤ 0,004 ≤ 0,1 ≤ 0,002 ≤ 0,05 ≤ 0,5 3.07 ≤ 0,05 Kupfer mg/l < 0,005 ≤ 1 ≤ 5 ≤ 10 ≤ 0,05 ≤ 0,2 3.08 Nickel mg/l < 0,001 ≤ 0.04 $\leq 0,04$ ≤ 0,2 ≤ 1 ≤ 4 \leq 0,05 3.09 Quecksilber mg/l < 0,0002 $\leq 0,0002$ ≤ 0,001 $\leq 0,005$ ≤ 0,02 ≤ 0,2 ≤ 0,0002 3.10 Zink mg/l < 0,01 ≤ 5 ≤ 20 ≤ 0,1 $\leq 0,1$ ≤ 0,4 ≤ 2 3.11 Chlorid mg/l 21 ≤ 10 ≤ 80 ≤ 1.500 ≤ 1.500 ≤ 2.500 ≤ 10 3.12 mg/l Sulfat 12 ≤ 50 ≤ 100 ≤ 2.000 ≤ 2.000 ≤ 5.000 ≤ 50 3.13 mg/l Cyanidfrei < 0,005 \leq 0,01 ≤ 0,01 ≤ 0,1 ≤ 0,5 ≤ 1 --3.14 mg/l Fluorid < 2,0 ≤ 1 ≤ 5 ≤ 15 ≤ 50 3.15 **Barium** mg/l 0,006 --≤ 2 ≤ 5 ≤ 10 ≤ 30 3.16 mg/l < 0,001 Chromgesamt $\leq 0,05$ ≤ 0,3 ≤ 1 ≤ 7 ≤ 0,03 3.17 Molybdän mg/l 0,012 $\leq 0,05$ ≤ 0,3 ≤ 1 ≤ 3 3.18a 0,003 Antimon mg/l ≤ 0,006 ≤ 0,03 ≤ 0,07 ≤ 0,5 -mg/l 3.19 Selen 0,001 ≤ 0,03 $\leq 0,05$ ≤ 0,7 $\leq 0,01$ 3.20 Gesamtgehalt an mg/l < 150 400 400 3000 6000 10000 gelösten Stoffen 3.21 el. Leitfähigkeit μS/cm 209 ≤ 500 Deponieklasse DK II nach Deponieverordnung (DepV) Glühverlust und TOC im Feststoff Maßgebende Parameter: n. b. = nicht bestimmbar < x,x = kleiner Bestimmungsgrenzen. n. = nicht nachweisbar n. a. = nicht analysiert

Bod 7		Auffül	llungen (n	ichtbind	ig)			Labo	or-Nr.: 12	3143863
Einzelproben: 3/6a	ı/b									
Parameter		Einheit	Analytik	BM-0 BG-0	BM-0* BG-0* 3)	ı	0*	BM-F1 BG-F1	BM-F2 BG-F2	BM-F3 BG-F3
Trackonmana	Foototoff	Ma%				l	Sand	1 ⁻ /		Ī
Trockenmasse Mineral. Fremd- bestandteile	Feststoff Feststoff	Vol%	≤ 50	bis 10	bis 10	bis 5	50	bis 50	bis 50	bis 50
TOC	Feststoff	Ma-%	14	1 ⁷⁾	1 ⁷⁾	5		5	5	5
EOX 11)	Feststoff	mg/kg	< 1,0	1	1					
KW, C ₁₀ – C ₂₂	Feststoff	mg/kg	< 40		300	300)	300	300	1.000
KW, C ₁₀ – C ₄₀	Feststoff	mg/kg	< 40		600	600)	600	600	2.000
pH-Wert	Eluat		8,0			6,5-9	,5	6,5-9,5	6,5-9,5	5,5-12,0
el. Leitfähigkeit 4)	Eluat	μS/cm	1.380		350	350)	500	500	2.000
Sulfat	Eluat	mg/l	110	250 ⁵⁾	250 ⁵⁾	250	5)	450	450	1.000
	Feststoff	mg/kg	76,2	10	20	40		40	40	150
Arsen	Eluat	μg/l	23		8 (13)	12		20	85	100
DI :	Feststoff	mg/kg	342	40	140	140)	140	140	700
Blei	Eluat	μg/l	< 0,1		23 (43)	35		90	250	470
Consideration and	Feststoff	mg/kg	13,9	0,4	1 ⁶⁾	2		2	2	10
Cadmium	Eluat	μg/l	0,9		2 (4)	3		3	10	15
Charana	Feststoff	mg/kg	32	30	120	120)	120	120	600
Chrom _{gesamt}	Eluat	μg/l	< 1		10 (19)	15		150	290	530
V. mfan	Feststoff	mg/kg	81	20	80	80		80	80	320
Kupfer	Eluat	μg/l	< 1		20 (41)	30		110	170	320
NU-L-1	Feststoff	mg/kg	82	15	100	100)	100	100	350
Nickel	Eluat	μg/l	< 1		20 (31)	30		30	150	280
Quecksilber	Feststoff	mg/kg	0,96	0,2	0,6	0,6		0,6	0,6	5
Quecksilber 12)	Eluat	μg/l	< 0,1		0,1					
Thallium	Feststoff	mg/kg	0,3	0,5	1,0	2		2	2	7
Thallium 12)	Eluat	μg/l	< 0,2		0,2 (0,3)					
7ink	Feststoff	mg/kg	2.110	60	300	300)	300	300	1.200
Zink	Eluat	μg/l	150		100 (210)	150)	160	840	1.600
PAK ₁₆ ¹⁰⁾	Feststoff	mg/kg	2,24	3	6	6		6	9	30
Benzo(a)pyren	Feststoff	mg/kg	0,14	0,3						
PAK ₁₅ ⁹⁾	Eluat	μg/l	0,015		0,2	0,3		1,5	3,8	20
Naphthalin u. Methyl- naphthaline, gesamt	Eluat	μg/l	0,005		2					
PCB ₆ und PCB-118	Feststoff	mg/kg	0,020	0,05	0,10					
	Eluat	μg/l	n.b.		0,01					
Gesamtbewertung	/ Materia	alwerte		> BM-	F3 / BG-F	3 nac	h E	BV, Anl	age 1, Ta	belle 3

Kommentar: maßgebende Parameter: TOC, Cadmium, Zink im Feststoff

^{1) - 12)} Fußnoten entsprechend Erläuterungen in EBV, Anlage 1, Tabelle 3.

n.b. labortechnisch nicht bestimmbar

Reg.-Nr.: 08371 – 118 Große Kreisstadt Glauchau - WAD GmbH \ Glauchau, Pestalozzistraße ENB AW-Kanal und Straßenausbau \ Baugrund- und Abfalluntersuchung

Bod 7	7		Auffüllu	ngen (nich	tbindig)		Labo	r-Nr.: 12	3143863
Einze	elproben: 3/6a/b								
Labor	befund nach Depo	nieverord	lnung	Zuordnung	swerte [Z	von Depo	nieklasse	n nach D	epV
Nr.	Parameter	Dim.	Analytik	Geolo- gische Barriere	DK 0	DKI	DK II	DK III	Rekulti- vierungs- schicht
1.01	Glühverlust	Ma-%	17,8	≤ 3	≤ 3	≤ 3	≤ 5	≤ 10	
1.02	TOC	Ma-%	14	≤ 1	≤ 1	≤ 1	≤ 3	≤ 6	
2.01	BTEX	mg/kg		≤ 1	≤ 6				
2.02	PCB	mg/kg	0,020	≤ 0,02	≤ 1				
2.03	KW, C ₁₀ - C ₄₀	mg/kg	< 40	≤ 100	≤ 500				
2.04	Σ EPA PAK	mg/kg	2,10	≤ 1	≤ 30				≤ 5
2.05	Benzo[a]pyren	mg/kg	0,14						≤ 0,6
2.06	Säureneutrali- sationskapazität	mmol/ kg							
2.07	extrahierbare lipophile Stoffe	Ma-%	< 0,02		≤ 0,1	≤ 0,4	≤ 0,8	≤ 4	
2.08	Blei	mg/kg	342						≤ 140
2.09	Cadmium	mg/kg	13,9						≤ 1,0
2.10	Chrom _{gesamt}	mg/kg	32						≤ 120
2.11	Kupfer	mg/kg	81						≤ 80
2.12	Nickel	mg/kg	82						≤ 100
2.13	Quecksilber	mg/kg	0,87						≤ 1,0
2.14	Zink	mg/kg	2.110						≤ 300
3.01	pH-Wert		8,4	6,5-9	5,5-13	5,5-13	5,5-13	4-13	≤ 6,5-9
3.02	DOC	mg/l	1,3		≤ 50	≤ 50	≤ 80	≤ 100	
3.03	Phenole	mg/l	< 0,01	≤ 0,05	≤ 0,1	≤ 0,2	≤ 50	≤ 100	
3.04	Arsen	mg/l	0,031	≤ 0,01	≤ 0,05	≤ 0,2	≤ 0,2	≤ 2,5	≤ 0,01
3.05	Blei	mg/l	0,001	≤ 0,02	≤ 0,05	≤ 0,2	≤ 1	≤ 5	≤ 0,04
3.06	Cadmium	mg/l	< 0,0003	≤ 0,002	≤ 0,004	≤ 0,05	≤ 0,1	≤ 0,5	≤ 0,002
3.07	Kupfer	mg/l	< 0,005	≤ 0,05	≤ 0,2	≤ 1	≤ 5	≤ 10	≤ 0,05
3.08	Nickel	mg/l	< 0,001	≤ 0,04	≤ 0,04	≤ 0,2	≤ 1	≤ 4	≤ 0,05
3.09	Quecksilber	mg/l	< 0,0002	≤ 0,0002	≤ 0,001	≤ 0,005	≤ 0,02	≤ 0,2	≤ 0,0002
3.10	Zink	mg/l	0,02	≤ 0,1	≤ 0,4	≤ 2	≤ 5	≤ 20	≤ 0,1
3.11	Chlorid	mg/l	54	≤ 10	≤ 80	≤ 1.500	≤ 1.500	≤ 2.500	≤ 10
3.12	Sulfat	mg/l	23	≤ 50	≤ 100	≤ 2.000	≤ 2.000	≤ 5.000	≤ 50
3.13	Cyanid _{frei}	mg/l	< 0,005	≤ 0,01	≤ 0,01	≤ 0,1	≤ 0,5	≤ 1	
3.14	Fluorid	mg/l	< 2,0		≤ 1	≤ 5	≤ 15	≤ 50	
3.15	Barium	mg/l	0,026		≤ 2	≤ 5	≤ 10	≤ 30	
3.16	Chrom _{gesamt}	mg/l	< 0,001		≤ 0,05	≤ 0,3	≤ 1	≤ 7	≤ 0,03
3.17	Molybdän	mg/l	0,043		≤ 0,05	≤ 0,3	≤ 1	≤ 3	
3.18a	Antimon	mg/l	0,017		≤ 0,006	≤ 0,03	≤ 0,07	≤ 0,5	
3.19	Selen	mg/l	< 0,001		≤ 0,01	≤ 0,03	≤ 0,05	≤ 0,7	
3.20	Gesamtgehalt an gelösten Stoffen	mg/l	190 400 400 3000 6000 10000						
3.21	el. Leitfähigkeit	μS/cm	330						≤ 500
	nieklasse		O.III.		nach De	ponievero	ordnung ((DepV)	
	ebende Parameter:		Glühverlust						
n. b. = nic	cht bestimmbar	n. n. = nicht n	achweisbar	< x,x =	kleiner Bestimr	nungsgrenze		n.a. = nicht	analysiert

 Reg.-Nr.:
 08371 – 118
 Große Kreisstadt Glaucha

 Proj.-Nr.:
 16788 / 40139
 ENB AW-Kanal und Straße

Seite 30 von 44

Bod 8 natürlich gewachsene Böde Labor-Nr.: 123145529

Einzelproben: 1/6a/b + 1/7a/b + 2/5a/b + 2/6a/b + 2/7a/b + 3/8a/b + 4/7a/b + 5/5a/b + 5/6a/b + 6/6a/b + 6/7a/b

Parameter		Einheit	Analytik	BM-0 BG-0	BM-0* BG-0* 3)	BM-F0* BG-F0*	BM-F1 BG-F1	BM-F2 BG-F2	BM-F3 BG-F3
						Lehm, S	Schluff 2)		
Trockenmasse	Feststoff	Ma%	88,2						
Mineral. Fremd- bestandteile	Feststoff	Vol%	< 10	bis 10	bis 10	bis 50	bis 50	bis 50	bis 50
TOC	Feststoff	Ma-%	0,1	1 ⁷⁾	1 ⁷⁾	5	5	5	5
EOX ¹¹⁾	Feststoff	mg/kg	< 1,0	1	1				
KW, C ₁₀ – C ₂₂	Feststoff	mg/kg	< 40		300	300	300	300	1.000
$KW, C_{10} - C_{40}$	Feststoff	mg/kg	< 40		600	600	600	600	2.000
pH-Wert	Eluat		7,3			6,5-9,5	6,5-9,5	6,5-9,5	5,5-12,0
el. Leitfähigkeit 4)	Eluat	μS/cm	492	5)	350	350	500	500	2.000
Sulfat	Eluat	mg/l	75	250 ⁵⁾	250 ⁵⁾	250 ⁵⁾	450	450	1.000
Aroon	Feststoff	mg/kg	17,4	20	20	40	40	40	150
Arsen	Eluat	μg/l	< 1		8 (13)	12	20	85	
DI.:	Feststoff	mg/kg	17	70	140	140	140	140	700
Blei	Eluat	μg/l	< 1		23 (43)	35	90	250	470
	Feststoff	mg/kg	< 0,2	1	1 ⁶⁾	2	2	2	10
Cadmium	Eluat	μg/l	< 0,3		2 (4)	3	3	10	15
	Feststoff	mg/kg	35	60	120	120	120	120	600
Chrom _{gesamt}	Eluat	μg/l	< 1		10 (19)	15	150	290	530
	Feststoff	mg/kg	18	40	80	80	80	80	320
Kupfer	Eluat	μg/l	< 1		20 (41)	30	110	170	320
	Feststoff	mg/kg	27	50	100	100	100	100	350
Nickel	Eluat	μg/l	< 1		20 (31)	30	30	150	280
Quecksilber	Feststoff	mg/kg	< 0,07	0,3	0,6	0,6	0,6	0,6	5
Quecksilber 12)	Eluat	μg/l	< 0,2		0,1				
Thallium	Feststoff	mg/kg	0,3	1,0	1,0	2	2	2	7
Thallium ¹²⁾	Eluat	μg/l	< 0,2		0,2 (0,3)				
	Feststoff	mg/kg	58	150	300	300	300	300	1.200
Zink	Eluat	μg/l	< 10		100 (210)	150	160	840	1.600
PAK ₁₆ ¹⁰⁾	Feststoff	mg/kg	0,100	3	6	6	6	9	30
Benzo(a)pyren	Feststoff	mg/kg	< 0,05	0,3					
PAK ₁₅ 9)	Eluat	μg/l	0,015		0,2	0,3	1,5	3,8	20
Naphthalin u. Methyl- naphthaline, gesamt	Eluat	μg/l	n.b.		2				
PCB ₆ und PCB-118	Feststoff	mg/kg	0,010	0,05	0,10				
	Eluat	μg/l	n.b.		0,01				

Gesamtbewertung / Materialwerte

BM-0 / BG-0 nach EBV, Anlage 1, Tabelle 3

Kommentar: Der pH-Wert und die el. Leitfähigkeit stellen einen stoffspezifischen Orientierungswert dar und werden anhand der übrigen Parameter als nicht maßgebend betrachtet.

^{1) - 12)} Fußnoten entsprechend Erläuterungen in EBV, Anlage 1, Tabelle 3.

n.b. labortechnisch nicht bestimmbar

2.4 Besonderheiten

Altbergbau / Untergrundschwächen

Nach der Unterlage /12/ liegt die Trasse gemäß § 8 Sächs.HohlrVO außerhalb eines Hohlraumverdachtsgebietes. Eine Bergbauliche Stellungnahme des Sächsischen Oberbergamtes ist daher nicht einzuholen.

Andere Untergrundschwächen wie Auslaugungen und Verkarstungen sind aufgrund der geologischen Verhältnisse auszuschließen.

<u>Schutzzonen</u>

Entsprechend der Unterlage /12/ sind im Trassenbereich keine Schutzgebiete bekannt.

Erdbeben

Nach der Unterlage /13/ ist Glauchau der Erdbebenzone 1 und der Untergrundklasse R zuzuordnen.

Wasserrecht

Im Zuge der Baumaßnahme ist, abhängig vom natürlichen Wasserdargebot, ein Wasseranschnitt nicht gänzlich ausgeschlossen. Im Rahmen der weiteren Planung ist in Absprache mit der zuständigen Behörde zu prüfen, ob das Vorhaben einer Wasserrechtlichen Erlaubnis nach Sächsischem Wassergesetz bzw. Wasserhaushaltgesetz bedarf.

Für das Einleiten von bauzeitlich zu hebenden Wasser in einen Vorfluter (Kanal, Gewässer, etc.) ist generell eine entsprechende Genehmigung einzuholen.

Nachbarbebauungen

In einer Entfernung von meist mehreren Metern stehen parallel der Trasse meist mehrgeschossige Stützmauern, Gründungsverhältnisse Gebäude und deren dem Unterzeichner unbekannt sind. Unter Beachtung der zu erwartenden Grabentiefen und den anstehenden Baugrundverhältnissen sind aus geotechnischer Sicht keine Sicherungsmaßnahmen am Bauwerksbestand zu erwarten. Dies muss im Rahmen der weiteren Planung und der Bauausführung nochmals überprüft werden.

Weiter wird darauf hingewiesen, dass Einflüsse welche im Extremfall zu Schäden am angrenzenden Bestand führen, nicht vollständig auszuschließen sind. Dies gilt insbesondere dann, wenn starke Erschütterungen (z.B. Aufbruch- bzw. Verdichtungsarbeiten, etc.) wirken. Zur Vermeidung späterer Streitigkeiten und insbesondere zur Abwehr ungerechtfertigter Forderungen sollte vor Beginn der Bauarbeiten eine Dokumentation des Istzustandes (Beweissicherung) ausgeführt werden.

2.5 Einschätzung der Untersuchungsergebnisse hinsichtlich der Aufgabenstellung

Es kann eingeschätzt werden, dass die durchgeführten Untersuchungen für die Bewältigung der Aufgabenstellung (⇒ Punkt 1) ausreichend sind.

3 Schlussfolgerungen

3.1 Allgemeine Einschätzung

Die vorliegenden Erkundungsergebnisse, sowie die Sohltiefen der bestehenden Kanäle wurden in einem Idealisierten Ingenieurgeologischen Längsschnitt (⇔ Anlage 1.3) zeichnerisch dargestellt.

3.1.1 Kanalerneuerung

Unter Beachtung der anstehenden Baugrundverhältnisse, der Verlegetiefen und der Nennweiten sind im Rahmen der weiteren Planung bzw. Bauausführung entsprechende statische Nachweise (Rohrstatik, etc.) durchzuführen. Es wird von einer offenen Verlegung ausgegangen.

In der Rohrgrabensohle steht zumeist ein Terrassenlehm steifer, lokal begrenzt auch steif bis halbfester bzw. weich bis steifer Konsistenz an. Teilweise, insbesondere zwischen der Oststraße / Kleine Weberstraße und Lichtensteiner Straße / Chemnitzer Straße, ist in der Rohrgrabensohle mit einem mitteldicht bis dicht gelagerten Terrassenschotter zu rechnen.

Zusammenfassend können die Tragfähigkeitsverhältnisse für den geplanten Rohrleitungsbau als ausreichend bis gut bezeichnet werden. Lediglich bei lokalen Aufweichungen der Böden (Konsistenz weich oder schlechter), die vor allem witterungsbedingt während der Bauausführung auftreten können, ist vereinzelt ein 20 ... 25 cm mächtiger Bodenaustausch notwendig. Als Austauschmaterial können Mineralstoffgemische, wie z.B. eine Vorabsiebung 0/40 ... 0/60 mm, gebrochenes Korn, mit einem Sand- und Feinkornanteil von 20 ... 35 M-% und einem Feinkornanteil von max. 12 ... 15 M-% im eingebauten Zustand, oder fließfähiger Unterbeton in Frage kommen.

Weiter muss auf meist erhöhte bis hohe Wasserempfindlichkeit der in der Rohrgrabensohle anstehenden Böden hingewiesen werden, die bei zusetzenden Wässern teilweise rasch zu Aufweichungen, verbunden mit Tragfähigkeitsverlusten, neigen. Auf eine Nachverdichtung der Rohrgrabensohle ist generell zu verzichten und der Rohrgrabenaushub sollte vorzugsweise mit Hilfe einer Glattschaufel erfolgen, um die Rohrgrabensohle glatt abziehen zu können.

Ausgehend von den in der Rohrgrabensohle zu erwartenden Baugrundschichten und deren Tragfähigkeiten, kann für die Leitungsbettungen im Regelfall eine Bettungszone Typ 1 nach DIN EN 1610:2015-12 zum Ansatz kommen.

Zum Herstellen der unteren Bettungszone können, in Abhängigkeit der zu verlegenden Nennweiten, bei einer trockenen Rohrgrabensohle Mineralstoffgemische *(gebrochenes Korn oder Rundkorn)* der entsprechenden Körnung und bei wassergesättigter Rohrgrabensohle ein Beton (fließfähig) verwendet werden.

3.1.2 Ausbau der Verkehrsfläche

Die vorhandenen Verkehrsfläche besitzt einen schwankenden Oberbau zwischen 33 cm und 50 cm, mit einem gebundenen Oberbau (Asphalt) von 8 ... 10 cm. Darüber hinaus wird der gebundene Oberbau teilweise durch eine alte Pflasterlage (Dicke 11 ... 14 cm) und vereinzelt einer Lage Beton, Dicke 12 cm, ergänzt. In der Summe entspricht die Dicke des gesamten Oberbau nicht den heute gültigen Normen wie RStO 12 bzw. ZTVE-StB 17.

Zusätzlich ist anzumerken, dass im ungebundenen Oberbau lokal ein Packlager aus Steinsatz angetroffen wurde.

Der komplette Ausbau der Verkehrsfläche stellt eine einfache und wenig setzungsempfindliche Baumaßnahme dar. Die Dicke des erforderlichen Oberbaus sollte nach den Kriterien der RStO 12 gewählt werden.

Aus der Annahme einer Belastungsklasse Bk3,2 in Verbindung mit einer überschlägigen Abwägung von Mehr- und Minderdicken, ergibt sich gemäß Tabellen 6 und 7 der RStO 12, den örtlichen Verhältnissen und den geotechnischen Rahmenbedingungen folgende angenommene Mächtigkeit des frostsicheren Oberbaus.

Kriterium	Örtliche Verhältnisse	Mehr- und Minderdicke
Frostempfindlichkeitsklasse	F3 (lokal F2)	60 cm
Frosteinwirkung	Zone III	+ 15 cm
Klimaunterschiede	keine besonderen Klimaeinflüsse	± 0 cm
Wasserverhältnisse im Untergrund	kein Grund- und Schichtenwasser bis in eine Tiefe von 1,5 m unter Planum	± 0 cm
Lage der Gradiente	Geländehöhe bis Damm ≤ 2,0 m	± 0 cm
Entwässerung der Fahrbahn	Entwässerung der Fahrbahn und Randbereiche über Rinnen bzw. Abläufe und Rohrleitungen	- 5 cm
	SUMME	70 cm

Die endgültige Mächtigkeit des neuen Straßenoberbaus ist planungsseitig abzuleitenden und festzulegen. Zieht man den zuvor ermittelten Betrag des erforderlichen Oberbaus von der Geländeoberkante ab, stehen auf Höhe des "neuen Verkehrsflächenplanums" vorrangig eine wechselnde Verbreitung folgender Bodenschichten an.

- unterschiedlich mächtige, wechselnd zusammengesetzte anthropogene Auffüllungen (regionaltypischer Bodenaushub, teilw. mit Bauschutt, Ascheresten, etc. vermischt) lockerer bis mitteldichter Lagerung bzw. steif bis weich, lokal halbfester Konsistenz
- Terrassen-/Aue-/Hanglehm steif bis weiche, teilweise steif bis halbfeste Konsistenz

Der Straßenraum ist durch diverse, unterirdisch verlegte Ver- und Entsorgungsleitungen geprägt. Damit sind von den erkundeten auch abweichend Baugrundverhältnisse (zumeist anthropogene Auffüllungen der Leitungsgräben) nicht auszuschließen. Im künftigen Planum ist daher mit kurzräumig wechselnden Verhältnissen (anthropogene Auffüllungen, natürlich gewachsene Böden, etc.) zu rechnen.

Entsprechend den Forderungen der ZTVE-StB 17 ist im Planum ein Verformungsmodul von $E_{v2} \ge 45$ MPa nachzuweisen. Gemäß der lokal vorliegenden Erkundungsergebnisse und den Erfahrungen des Unterzeichners sind im Planum Werte von $E_{v2} = 20 \dots 55$ MPa zu erwarten, d.h. es liegen nur teilweise ausreichende Tragfähigkeitsverhältnisse vor.

Zur Erhöhung der erforderlichen Tragfähigkeit im Planum sollten vorsorglich für die gesamte Baumaßnahme ein ca. 25 ... 30 cm mächtiger Bodenaustausch einkalkuliert werden, dessen Notwendigkeit während der Baumaßnahme ggf. noch eingegrenzt werden kann.

Als Austauschmaterial können Mineralstoffgemische, wie z.B. eine Vorabsiebung (gebrochenes Korn) der Körnung von 0/40 ... 0/60 mm mit einem Sand-/Feinkornanteil von 20 ... 35 M-% und einem Feinkornanteil von maximal 12 ... 15 M-% im eingebauten Zustand, ein zertifiziertes Mineralstoffgemisch der Körnung 0/45 mm bis 0/56 mm Verwendung finden. Alternativ ist auch ein 20 ... 25 cm mächtiger Bodenaustausch mit hydraulisch gebundenen Mineralstoffgemischen (HGT-Material) denkbar.

Vor dem Einbau des frostsicheren Oberbaus ist das Planum seitlich zu neigen, glatt abzuwalzen und die Tragfähigkeit entsprechend den geforderten Verformungsmoduli der ZTV-E StB 17, mit geeigneten Prüfverfahren, wie statische Lastplatte und zusätzlich mittels Fallplatte, nachzuweisen.

Die im Planum anstehenden Bodenschichten sind je nach Feinkornanteil als überwiegend erhöht bis durchschnittlich wasserempfindlich einzuschätzen und neigen bei Wasserzutritt teilweise zum raschen Aufweichen. Deshalb ist auf einen zügigen Baufortschritt zu orientieren, das heißt das freigelegte Planum ist schnellstmöglich mit Austauschmaterial beziehungsweise Frostschutzmaterial abzudecken und eine dynamische Nachverdichtung des Planums ist zu unterlassen.

Weiterhin vorteilhaft ist es, wenn die Arbeiten zum Ersatzneubau des Abwasserkanales von der vorhandenen Verkehrsfläche aus erfolgen und das spätere Verkehrsflächenplanum erst unmittelbar vor den Straßenbauarbeiten freigelegt und hergestellt wird.

Wird lediglich ein Verschließen des Rohrgrabens ohne grundhaften Ausbau der gesamten Verkehrsfläche ausgeführt, sollte der Straßenoberbau im Bereich des Grabenverschlusses dem Bestand angeglichen werden.

3.2 Bodenmechanische Kennwerte

1		2	3	4	5	6	7
Bodenart		Kurzzeichen DIN 18 196	γ _n ¹⁾	φ′	c'	Es	Frost- empf.
[]		[]	[kN/m³]	[°]	[kN/m ²]	[MN/m ²]	[]
Auffüllungen (ungeb. TS / Packlager)		[GU] - []	18 – 20 19	34 – 38 36	0	30 – 50 40	F 2 – F 1
Auffüllungen	weich – steif / locker – mitteldicht	[TL] / [GU] / A	18 – 20 19	27 – 33 30	6 – 0 3	5 – 25 15	F3-F2
Hanglehm	steif – halbfest	TL – ST*	19 – 21 20	26 – 30 28	7 – 3 5	10 – 20 15	F 3
Auelehm	weich – steif	TL – ST*	19 – 21 20	26 – 30 28	1 – 3 2	5 – 15 10	F 3
Terrassenlehm	steif – weich	ТМ	20 – 22 21	25 – 27 26	8 – 4 6	25 – 10 17	F3
Terrassen- schotter	mitteldicht – dicht	SU* / GU	20 – 22 21	32 – 36 34	3 – 1 2	30 – 50 40	F3-F2

Die fett gedruckten Kennwerte gelten als Berechnungswerte

3.3 Homogenbereiche (VOB/C 2019)

Es wird darauf hingewiesen, dass die nachfolgend genannten Kennwerte auf den vorliegenden Laboruntersuchungen, sowie den regionalgeologischen Erfahrungswerten bzw. büroeigenen Archivunterlagen des Unterzeichners basieren.

Das Bergen von Straßenaufbruch, Leitungsbestand, Bauwerksabbruch, Wurzelstubben, etc. ist nicht mit den nachfolgend genannten Homogenbereichen definiert. Hierzu sind im LV der Ausschreibung entsprechende Positionen zu vereinbaren.

Nachfolgend sind die einzelnen Bodenschichten in maßgebende Homogenbereiche zusammengefasst:

¹⁾ Im Wassereinflussbereich ist der Auftrieb zu berücksichtigen.

²⁾ Erfahrungswerte des Unterzeichners – unterhalb der Aufschlussendteufen zu erwarten

Homogenbereiche (DIN 18300:2019-09)								
	A-1	A-2	В					
ortsübliche Bezeichnung	Auffüllungen (ungeb. TS / Packlager, etc.)	Auffüllungen (Bodenaushub, Mineralgemische, Kiessand, ± Keramik, ± Bauschutt, ± Müll ± Schlacke, etc.)	Hanglehm, Auelehm, Terrassenlehm, Terrassenschotter					
Bodengruppe nach DIN 18196	[GU] – []	[TL] / [GU] / A	TL - ST* / TM / SU* / GU					
Korngrößenverteilung nach DIN 18123 [mm]	0 - 60 (< 0,063 mm: 15 0 %)	0 - 60 (< 0,063 mm: 75 5 %)	0 - 60 (< 0,063 mm: 85 5 %)					
Anteil Steine [M%] Anteil Blöcke [M%] Anteil gr. Blöcke [M%]	≤ 80 ≤ 35 ≤ 15	≤ 50 ≤ 25 ≤ 10	≤ 40 ≤ 20 ≤ 5					
Dichte ρ nach DIN EN ISO 17892-2 [g/cm³]	1,8.	2,0	1,92,2					
undr. Scherfestigkeit c _u nach DIN 4094-4 oder DIN 18136 oder DIN 18137-2 [kN/m²]			25 – 80 [bind. Böden]					
Wassergehalt n. DIN EN ISO 17892-1 [M%]	1 – 8	2 – 30						
Konsistenzzahl I _c nach DIN 18122-1		0,50 - >1,00 (weich-halbfest) [bind. Böden]						
Plastizitätszahl I _p nach DIN 18122-1	0,02 – 0 (leicht- bis mitt [bind. Bö		ittelplastisch)					
Lagerungsdichte I _D nach DIN EN ISO 14688-2 [%]	35 – 85 (mitteldicht bis dicht)	15 – 65 (locker bis mitteldicht)	35 – 85 (mitteldicht bis dicht)					
org. Anteil n. DIN 18128 [M%]	0 – 2	0 – 5	2 – 8					
Einbauklasse n. LAGA TR Boden	> Z 2	> Z 2	Z 0					
Deponieklassen nach DepV	DK I	DK II (bindig) > DK III (nichtbindig)						
Materialklassen nach EBV	BM-F3 / BG-F3	> BM-F3 / BG-F3	BM-0 / BG-0					
Deponieklassen nach DepV		DK II (bindig) > DK III (nichtbindig)						

3.4 Wasserhaltung

Bauzustand

Während der Erd- und Tiefbauarbeiten ist ein temporärer, lokal begrenzter Anschnitt von Schichten-/Sickerwasser nicht gänzlich auszuschließen. Zusätzlich muss während der Bauzeit mit temporären Niederschlagswasser gerechnet werden.

Zur Ableitung der anfallenden Wässer sollte während der Bauausführung vor Ort eine offene Wasserhaltungsanlage betriebsbereit vorgehalten, bei Bedarf, unter Beachtung der allgemein wasserempfindlichen Böden, unverzüglich eingesetzt und bis zum Erreichen einer ausreichenden Auftriebssicherheit der Bauteile betrieben werden.

Abschließend wird noch auf die Hinweise im Pkt. 2.4 (Wasserrecht) hingewiesen.

Endzustand

Im Bereich des Rohrgrabens sind aus baugrundtechnischer Sicht keine gesonderten Maßnahmen zur Wasserhaltung notwendig.

Alle Bauteile und Schächte der Leitungstrasse sind auftriebssicher herzustellen und bauzeitliche Wasserhaltungsanlagen sind außer Betrieb zu nehmen und zu verschließen.

Das Planum der Verkehrsflächen ist seitlich zu neigen und über eine Planumsdrainage zu entwässern.

3.5 Verbau / Böschungen

<u>Baugrubenverbau</u>

wird zur Reduzierung des Platzbedarfes und des erforderlichen Rohrgrabenaushubes empfohlen. Dabei kann ein konfektionierter Grabenverbau, der form- und kraftschlüssig mit dem dahinterliegenden Baugrund verfüllt werden muss, zur Anwendung kommen. Generell ist darauf zu achten, dass der Rohrgrabenaushub im Schutze des Verbaus erfolgt. Ein nachträgliches Einstellen des Verbaus in den bereits ausgehobenen Rohrgraben ist unzulässig.

Ein statischer Nachweis der zum Einsatz kommenden Verbauart muss im Rahmen der Planung bzw. Bauausführung noch erfolgen.

Baugrubenböschungen / Bleibende Böschungen

sind im Rahmen der Baumaßnahme nicht zu empfehlen bzw. nicht erwarten.

3.6 Wiederverwendbarkeit der Aushuberdstoffe

3.6.1 Abfallrechtliche Belange

gebundener Straßenoberbau (Asphalt)

Material Maßgebende Einzelproben	Verwertungs- klasse RuVA-StB 01	Abfallschlüssel- nummer AVV	Verwertung
Asphalt EP: 1/1 + 1/2 + 2/1 + 3/1 + 3/2 + 3/3 + 4/1 + 4/2 + 5/1 + 5/2 + 6/1 + 6/2 + 6/3	В	4=00.04	Deponierung / thermische Verwertung
Asphalt EP: 3/4 (auffälliger Geruch)	В	17 03 01* kohlenteerhaltige Bitumengemische	(gem. /16/ keine Widerverwertung im Asphalt sondern aus
Asphalt EP: 4/3a/b (Fräsgut)	В		dem Stoffkreislauf ausschleusen)

gebundener Straßenoberbau (Beton)

Lagebezug Laborprobe – Maßgebende Einzelproben	Materialklassen nach EBV, Anlage 1, Tab. 1	Abfallschlüsselnummer AVV
(1-A/RKS – zwischen Oststraße / Kleine Weberstraße und Lichtensteiner Straße / Chemnitzer Straße((Bscht 1 – EP: 1/3)	RC-1 ()	17 01 01 Beton der keine gefährlichen Stoffe enthält

Abweichend von den zuvor angegebenen Abfallschlüsselnummern kann nach § 3, Absatz 3 der AVV die zuständige Behörde eine andere Einstufung der Abfälle vornehmen. Im Rahmen der weiteren Planung sollten die zuständigen Abfallbehörden und mögliche Verwerter einbezogen werden.

Entsprechend der Angaben der Bundes-Bodenschutz- und Altlastenverordnung (BBodSchV) gilt bei der Wiederverwendung von aufbereitetem Bauschutt das Verschlechterungsverbot am Einbauort, also Verwertung nur auf gleich hoch oder höher belasteter Auflage. Erfolgt keine bauliche Verwertung, ist der Abfall im Sinne Beseitigung an eine hierfür zugelassene Entsorgungs- bzw. Verwertungsanlagen anzudienen.

Die vorliegenden Untersuchungsergebnisse basieren auf den in der EBV, Anlage 1, Tabelle 1 enthaltenen Parameterlisten als für nicht aufbereiteten Bauschutt allgemein übliche abfalltechnische Prüfprogramme.

Hinsichtlich der Einsatzmöglichkeiten von mineralischen Ersatzbaustoffen in technischen Bauwerken ist die EBV, Anlage 2, Erläuterungen und

- Tabelle 1 f
 ür Recycling-Baustoff der Klasse RC-1
- Tabelle 2 für Recycling-Baustoff der Klasse RC-2
- Tabelle 3 für Recycling-Baustoff der Klasse RC-3

zu beachten. In diesen Tabellen sind in Abhängigkeit der Materialklassen verschiedene Einbauweisen (zulässig und unzulässig) aufgeführt.

Die Eigenschaft der Grundwasserdeckschicht in Abhängigkeit der grundwasserfreien Sickerstrecke kann, unter Beachtung der zum Zeitpunkt der Gutachtenerstellung angeschnittenen Wasserhorizonte bzw. hydrogeologischen Verhältnisse, im Trassenbereich als **günstig** eingestuft werden. Weiterhin ist zu prüfen, ob der Einbauort des Materials innerhalb oder außerhalb von Wasserschutzbereichen liegt. Im Baufeld sind keine WSG bekannt (⇒ Pkt. 2.4).

Erfolgt keine bautechnische Verwertung der mechanisch aufbereiteten Aufbruchmassen vor Ort, obwohl eine Materialklasse eingehalten wird, ist es gemäß "Verordnung zur Einführung einer Ersatzbaustoffverordnung, zur Neufassung der Bundes-Bodenschutz- und Abfallverordnung und zur Änderung der Deponieverordnung und der Gewerbeabfallverordnung" (sogenannte Mantelverordnung), Artikel 3 – Änderung der Deponieverordnung, § 6, Absatz 1a zulässig, diese ohne weitere Untersuchung auf entsprechend zugelassenen Entsorgungs- bzw. Verwertungsunternehmen / Deponien zu beseitigen, wenn sie nach Abschnitt 3 Unterabschnitt 1 der Ersatzbaustoffverordnung güteüberwacht und klassifiziert sind. Voraussetzung ist die Einhaltung der Annahmekriterien und -parameter des jeweiligen Entsorgungs- bzw. Verwertungsunternehmens / Deponie.

Weiterhin ergeht der Hinweis, dass bei Bieteranfragen die kompletten Untersuchungsergebnisse der abfalltechnischen Prüfungen zur Verfügung gestellt werden sollten. Die alleinige Ausweisung der abfallrechtlichen Zuordnung genügt für die Findung des effizientesten Verwertungs- oder Entsorgungsweges im Allgemeinen nicht. Eventuell können die durchgeführten Deklarationen nicht ausreichen. Verschiedene Entsorger bzw. Verwerter gemäß ihrer behördlichen Zulassung Deklarationen nach anderweitigen Prüfprogrammen oder fragen zusätzliche Parameter ab.

Auffüllungen / natürlich gewachsene Böden nach LAGA TR Boden

Material Laborprobe – Maßgebende Einzelproben	Zuordnungsklassen LAGA TR Boden	Abfallschlüsselnummer AVV		
ivialsgebende Elinzelprobert	DepV			
ungeb. Tragschichten / Packlager / Kiessand	> Z 2 (Arsen in EL)	17 05 04		
(Bod 1 – Einzelproben 1/4a/b + 2/2a/b + 2/3a/b + 2/4a/b + 4/a/b + 4/5a/b + 5/4a/b + 6/4a/b + 6/5a/b)	DK I ()	Boden und Steine, die keine gefährlichen Stoffe enthalten		

Material Laborprobe – Maßgebende Einzelproben	Zuordnungsklassen LAGA TR Boden DepV	Abfallschlüsselnummer AVV
Auffüllungen (bindig) (Bod 2 – Einzelproben	> Z 2 (∑ EPA PAK, Benzo[a]pyren in TS)	17 05 04 Boden und Steine, die keine
1/5a/b + 3/5a/b + 3/7a/b + 4/6a/b)	DK II (Glühverlust und TOC in TS)	gefährlichen Stoffe enthalten
Auffüllungen (nichtbindig)	> Z 2 (Cadmium, Zink, TOC in TS)	17 05 03*
(Bod 3 – Einzelproben 3/6a/b)	> DK III (Glühverlust und TOC in TS)	Boden und Steine, die gefährlichen Stoffe enthalten
natürlich gewachsene Böden (Bod 4 – Einzelproben 1/6a/b + 1/7a/b + 2/5a/b + 2/6a/b + 2/7a/b + 3/8a/b + 4/7a/b + 5/5a/b + 5/6a/b + 6/6a/b + 6/7a/b)	Z 0 ()	17 05 04 Boden und Steine, die keine gefährlichen Stoffe enthalten

Entsprechend der Angaben der Bundes-Bodenschutz- und Altlastenverordnung (BBodSchV) gilt bei der Wiederverwendung von Bodenaushub vor Ort das Verschlechterungsverbot, also Verwertung nur auf gleich hoch oder höher belasteter Auflage. Erfolgt keine bauliche Verwertung, ist der Abfall im Sinne Beseitigung an eine hierfür zugelassene Entsorgungs- bzw. Verwertungsanlagen anzudienen. Abweichend von den zuvor angegebenen Abfallschlüsselnummern kann nach § 3, Absatz 3 der AVV die zuständige Behörde eine andere Einstufung der Abfälle vornehmen.

Die vorliegenden Untersuchungsergebnisse basieren auf den in der LAGA – TR Boden enthaltenen Parameterlisten als für Bodenmaterial allgemein übliche abfalltechnische Prüfprogramme.

Der Baubereich ist im Sinne einer Abfallverwertung als **hydrogeologisch günstig** zu bewerten, was den Einbau von Böden der Einbauklassen **Z 0 bis Z 1.2**, in Ausnahmefällen auch **bis Z 2** ermöglicht.

Erfolgt keine bautechnische Verwertung der Aufbruch- oder Aushubmassen (z.B. Auffüllungen) vor Ort, können bzw. müssen diese zur Beseitigung einem entsprechend der LAGA-Einstufung zugelassenen Entsorgungs- bzw. Verwertungsunternehmen angedient werden. Hierzu ergeht der Hinweis, dass bei Bieteranfragen die kompletten Untersuchungsergebnisse der abfalltechnischen Prüfungen zur Verfügung gestellt werden sollten. Die alleinige Ausweisung der abfallrechtlichen Zuordnung genügt für die Findung des effizientesten Verwertungs- oder Entsorgungsweges im Allgemeinen nicht. Eventuell können die durchgeführten Deklarationen nicht ausreichen. Verschiedene Entsorger bzw. Verwerter fordern gemäß ihrer behördlichen Zulassung Deklarationen nach anderweitigen Prüfprogrammen oder fragen zusätzliche Parameter ab.

Zur endgültigen Deklarierung der zur Entsorgung tatsächlich anfallenden Massen werden baubegleitende Abfalluntersuchungen am Haufwerk empfohlen. Es wird aus gutachterlicher Sicht angeraten, baubegleitende Untersuchungen im direkten Auftrag des Bauherren zu vergeben und ausführen zu lassen. Wird dies nicht befolgt, sollten unbedingt bauseits vorgelegte Befunde auf Plausibilität und Vollständigkeit geprüft werden. Bei Unstimmigkeiten wäre eine Schiedsuntersuchung anzuraten.

Auffüllungen / natürlich gewachsene Böden nach Ersatzbaustoffverordnung EBV

Mit dem 01.08.2023 tritt im Abfallrecht die "Verordnung zur Einführung einer Ersatzbaustoffverordnung, zur Neufassung der Bundes-Bodenschutz- und Abfallverordnung und zur Änderung der Deponieverordnung und der Gewerbeabfallverordnung" (sogenannte Mantelverordnung) in Kraft und ersetzt die LAGA (LAGA M20) sowie zahlreiche länderspezifische Regelungen. Bei Ausschreibung und Umsetzung von Baumaßnahmen nach dem 01.08.2023 ist mit Erfordernis baubegleitenden Probenahmen am Haufwerk und Analysen nach Mantelverordnung zu rechnen.

Material Maßgebende Einzelproben	Materialklassen nach EBV, Anlage 1, Tab. 3	Abfallschlüsselnummer AVV		
	nach DepV			
ungeb. Tragschichten / Packlager / Kiessand	DU 50 / DO 50			
(Bod 5 – Einzelproben 1/4a/b + 2/2a/b + 2/3a/b + 2/4a/b + 4/a/b + 4/5a/b + 5/4a/b + 6/4a/b + 6/5a/b)	BM-F3 / BG-F3 (PAK ₁₅ im Eluat)	17 05 04 Boden und Steine die keine		
Auffüllungen (bindig)	> BM-F3 / BG-F3 (PAK ₁₆ im Feststoff)	gefährlichen Stoffe enthalten		
(Bod 6 – Einzelproben 1/5a/b + 3/5a/b + 3/7a/b + 4/6a/b)	DK II (Glühverlust und TOC im Feststoff)			
Auffüllungen (nichtbindig)	> BM-F3 / BG-F3 (TOC, Cadmium, Zink im Feststoff)	17 05 03*		
(Bod 7 – Einzelproben 3/6a/b)	> DK III (Glühverlust und TOC in TS)	Boden und Steine, die gefährlichen Stoffe enthalten		
natürlich gewachsene Böden				
(Bod 8 – Einzelproben 1/6a/b + 1/7a/b + 2/5a/b + 2/6a/b + 2/7a/b + 3/8a/b + 4/7a/b + 5/5a/b + 5/6a/b + 6/6a/b + 6/7a/b)	BM-0 / BG-0 ()	17 05 04 Boden und Steine die keine gefährlichen Stoffe enthalten		

Entsprechend der Angaben der Bundes-Bodenschutz- und Altlastenverordnung (BBodSchV) gilt bei der Wiederverwendung von Bodenaushub vor Ort das Verschlechterungsverbot, also Verwertung nur auf gleich hoch oder höher belasteter Auflage.

Erfolgt keine bauliche Verwertung, ist der Abfall im Sinne Beseitigung an eine hierfür zugelassene Entsorgungs- bzw. Verwertungsanlagen anzudienen. Abweichend von den zuvor angegebenen Abfallschlüsselnummern kann nach § 3, Absatz 3 der AVV die zuständige Behörde eine andere Einstufung der Abfälle vornehmen.

Die vorliegenden Untersuchungsergebnisse basieren auf den in der EBV, Anlage 1, Tab. 3 enthaltenen Parameterlisten als für Bodenmaterial und Baggergut allgemein übliche abfalltechnische Prüfprogramme. Hinsichtlich der Einsatzmöglichkeiten von mineralischen Ersatzbaustoffen in technischen Bauwerken ist die EBV, Anlage 2, Erläuterungen und

- Tabelle 5 für Bodenmaterial der Klassen 0* (BM-0*), F0* (BM-F0*) und Baggergut der Klassen 0* (BG-0*), F0* (BG-F0*)
- Tabelle 6 für Bodenmaterial der Klasse F1 (BM-F1) und Baggergut der Klasse F1 (BG-F1)
- Tabelle 7 für Bodenmaterial der Klasse F2 (BM-F2) und Baggergut der Klasse F2 (BG-F2)
- Tabelle 8 für Bodenmaterial der Klasse F3 (BM-F3) und Baggergut der Klasse F3 (BG-F3)

zu beachten. In diesen Tabellen sind in Abhängigkeit der Materialklassen verschiedene Einbauweisen (zulässig und unzulässig) aufgeführt.

Die Eigenschaft der Grundwasserdeckschicht in Abhängigkeit der grundwasserfreien Sickerstrecke kann, unter Beachtung der zum Zeitpunkt der Gutachtenerstellung angeschnittenen Wasserhorizonte bzw. hydrogeologischen Verhältnisse, im Baufeld als günstig eingestuft werden. Weiterhin ist zu prüfen, ob die Lage des Baufeldes / Baubereiches / Einbauort des Materials innerhalb oder außerhalb von Wasserschutzbereichen liegt. Im Baufeld sind keine WSG bekannt (⇒ Pkt. 2.4).

Erfolgt keine bautechnische Verwertung der Aufbruch- oder Aushubmassen vor Ort, obwohl eine Materialklasse eingehalten wird, ist es gemäß "Verordnung zur Einführung einer Ersatzbaustoffverordnung, zur Neufassung der Bundes-Bodenschutz- und Abfallverordnung und zur Änderung der Deponieverordnung und der Gewerbeabfallverordnung" (sogenannte Mantelverordnung), Artikel 3 – Änderung der Deponieverordnung, § 6, Absatz 1a zulässig, diese ohne weitere Untersuchung auf entsprechend zugelassenen Entsorgungs- bzw. Verwertungsunternehmen / Deponien zu beseitigen, wenn sie nach Abschn. 3 Unterabschn. 1 der Ersatzbaustoffverordnung güteüberwacht und klassifiziert sind. Dies gilt auch für nicht aufbereitetes Bodenmaterial und nicht aufbereitetes Baggergut, welches nach Abschn. 3 Unterabschn. 2 der Ersatzbaustoffverordnung untersucht und klassifiziert ist. Dabei lässt sich vereinfacht auszugsweise zusammenfassen:

- Bodenmaterial der Klasse 0, 0*, F0* oder F1 (BM-0, BM-0*, BM-F0*, BM-F1) Deponieklasse 0
- Baggergut der Klasse 0, 0*, F0* oder F1 (BG-0, BG-0*, BG-F0*, BG-F1) Deponieklasse 0
- Bodenmaterial der Klasse F2 oder F3 (BM-F2, BM-F3)
 Deponieklasse I
- Baggergut der Klasse F2 oder F3 (BG-F2, BG-F3)
 Deponieklasse I

Vorausgesetzt ist jedoch die Einhaltung der Annahmekriterien und -parameter des jeweiligen Entsorgungs- bzw. Verwertungsunternehmens / Deponie.

Weiterhin der Hinweis, bei Bieteranfragen die kompletten ergeht dass Untersuchungsergebnisse der abfalltechnischen Prüfungen zur Verfügung gestellt werden sollten. Die alleinige Ausweisung der abfallrechtlichen Zuordnung genügt für die Findung des effizientesten Verwertungs- oder Entsorgungsweges im Allgemeinen nicht. Eventuell können die durchgeführten Deklarationen nicht ausreichen. Verschiedene Entsorger bzw. Verwerter fordern gemäß ihrer behördlichen Zulassung Deklarationen nach anderweitigen Prüfprogrammen oder fragen zusätzliche Parameter ab.

3.6.2 Bodenmechanische Eignung

Die im Trassenbereich zum Aushub gelangenden Böden, sind aus bodenmechanischer Sicht als bindig bis gemischtkörnig zu bezeichnen und die bindigen Anteile weisen meist eine steif bis weiche, lokal auch halbfeste Konsistenz auf.

Unter Beachtung eines nahezu optimalen Wassergehaltes (Konsistenz halbfest bis steif) und der chemischen Eignung (⇒ Pkt. 3.6.1) können Teile des zu erwartenden Aushubgemisches vor Ort wieder eingebaut werden, wenn zur Erhöhung der Tragfähigkeitsverhältnisse im Verkehrsflächenplanum ein etwa 25 ... 30 cm mächtiger Bodenaustausch (z.B. Vorabsiebung regionaler Steinbrüche der Körnung 0/40 mm, mit einem Sand- und Feinkornanteil von 20 ... 35 M-% und einem Feinkornanteil von max. 12 ... 15 M-% im eingebauten Zustand oder Betonrecycling analoger Körnung) vorgesehen wird (⇒ Pkt. 3.2.1).

Alternativ können zur Rohrgrabenverfüllung komplett Austauschmassen, wie zuvor beschrieben, Verwendung finden.

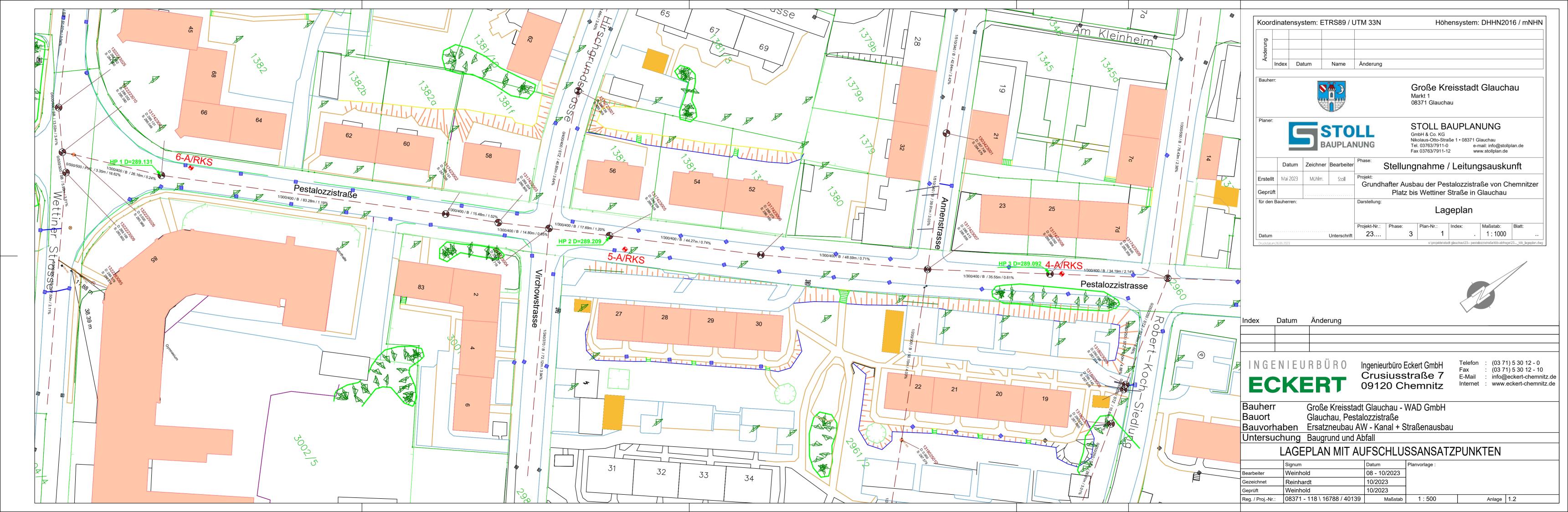
Beim Einbau von Aushub- bzw. Austauschmaterial sind generell größere Steine vollständig mit kleinkörnigem Material zu umhüllen, bzw. Steine mit einem Durchmesser ≥ 0,20 m (z.B. Packlager, etc.) auszutauschen. Im Winter ist darauf zu achten, dass kein gefrorener Boden eingebaut wird.

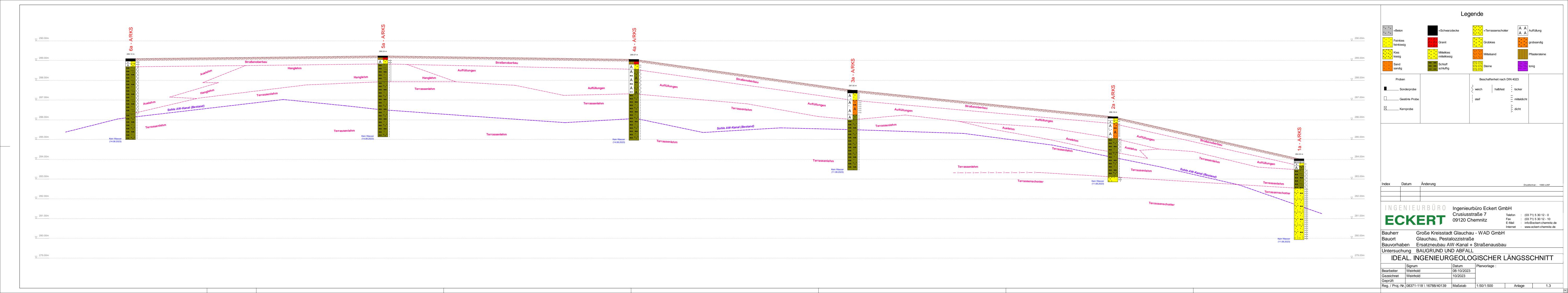
Eine ausreichende Verdichtung innerhalb der Rohrgrabenverfüllung sowie auf dem Verkehrsflächenplanum ist gemäß ZTVE-StB 17 zu fordern und auf der Baustelle, entsprechend dem Baufortschritt, zu überwachen (Verdichtungsprüfungen).

4 Abschließende Bemerkungen

Die Anzahl, Art und Tiefe der Aufschlüsse waren vertraglich durch den AG vorgegeben und wurden anhand der angetroffenen Baugrundverhältnisse vor Ort durch den Unterzeichner angepasst.

Es wird darauf aufmerksam gemacht, dass die Aufschlüsse nur Stichproben im Straßenoberbau, Planum und der darunter anstehenden Böden darstellen. Sie ermöglichen für die dazwischen liegenden Bereiche Wahrscheinlichkeitsaussagen zu den zu erwartenden Verhältnissen.


Auch bei Abfalluntersuchungen handelt es sich um Stichproben. Bereits aus Kostengründen kann nicht jedem einzelnen Substrat durch analytische Belege nachgegangen werden. Verschiedenste Mineralpartikel und Substanzen sind wechselnd anthropogen und geogen bedingt unregelmäßig in Böden verteilt. Sie verursachen Streuungen der Konzentrationen von durch abfalltechnische Prüfparameter erfassten Komponenten. Daher unterliegen Labormesswerte je nach konkreten Orten von Probenahmen entsprechenden Schwankungen. Diese können von den vorliegenden Befunden negativ oder positiv abweichen sowie auch die der Größenordnung von Spurenanalytik entsprechenden Grenzwerte abfalltechnischer Zuordnungen überschreiten.


Hinsichtlich der Minimierung des Baugrundrisikos, welches sich bereits u.a. aus den vorgenannten Wahrscheinlichkeitsaussagen für den Bauherrn ergibt, sollten bei Bedarf baubegleitende Baugrundabnahmen durch einen Sachverständigen ausgeführt werden.

Werden auf der Baustelle vom Ergebnisbericht abweichende Verhältnisse festgestellt, dann ist der Verfasser unverzüglich zu verständigen.

Soliten sich weitere Fragen ergeben, s	sterieri wii irirleri gerrie ri	ilit ililoittiationen zui	verrugurig.

Große Kreisstadt Glauchau \ WAD GmbH Projekt INGENIEURBÜRO Glauchau, Pestalozzistr. - ENB AW-Kanal + Straßenausbau **ECKERT** 08371-118 \ 16788/40139 \ Gö-11.- 14.08.2023 \ 260 Projektnr.: GmbH Anlage 2.1 Crusiusstraße 7 1: 25 Maßstab: 09120 Chemnitz 1a - A/RKS 284.03 m <u></u> 284.00m 0.00m 1/1 **0.04m** 0.04m =Schwarzdecke 1 1/2 0.10m 0.10 m/=Schwarzdecke 2 1/3 0.22m =Beton 0.22m Auffüllung:Kies, sandig, schwach schluffig 0.35m 0.35m [GU] =ungebundene Tragschicht mitteldicht, graubraun 0.55m Auffüllung:Schluff, kiesig, sandig, schwach tonig, 1/5 a 0.55m schwach org. Beimengung [TL] (mit Bauschutt) steif, braungrau 283.00m Schluff, stark sandig, tonig, schwach mittelkiesig, schwach feinkiesig =Terrassenlehm weich bis steif, gelbbraun 1.50m 1/6 a 1.50m 282.00m Feinkies, stark sandig, schluffig, mittelkiesig, schwach tonig =Terrassenschotter mitteldicht bis dicht, bindiger Anteil steif, gelbbraun, 281.00m braun <u></u> 280.00m 1/7 a 4.10m 4.10m 4.10m/ Kein Wasser (11.08.2023) nur noch sehr schwer sond.! Endtiefe

 TM

SU*

Crusiusstraße 7 09120 Chemnitz

284.00m

283.00m

282.00m

281.00m

<u></u> 280.00m

1b - A/RKS 0.00m 1/1 **0.04m** 0.04m =Schwarzdecke 1 1/2 0.10m 0.10m/_B =Schwarzdecke 2 1/3 0.22m =Beton 0.22m 0.35m A Auffüllung:Kies, sandig, schwach schluffig ☐ 0.35m [GU] =ungebundene Tragschicht mitteldicht, graubraun 0.55m •• Auffüllung:Schluff, kiesig, sandig, schwach tonig, 1/5 b | 0.55m schwach org. Beimengung [TL] (mit Bauschutt) steif, braungrau Schluff, stark sandig, tonig, schwach mittelkiesig, schwach feinkiesig TM =Terrassenlehm weich bis steif, gelbbraun 1/6 b 1.50m 1.50m Feinkies, stark sandig, schluffig, mittelkiesig, schwach tonig =Terrassenschotter SU* mitteldicht bis dicht, bindiger Anteil steif, gelbbraun, braun

Große Kreisstadt Glauchau \ WAD GmbH

Glauchau, Pestalozzistr. - ENB AW-Kanal + Straßenausbau

08371-118 \ 16788/40139 \ Gö-11.- 14.08.2023 \ 260

Projekt

Anlage

Projektnr.:

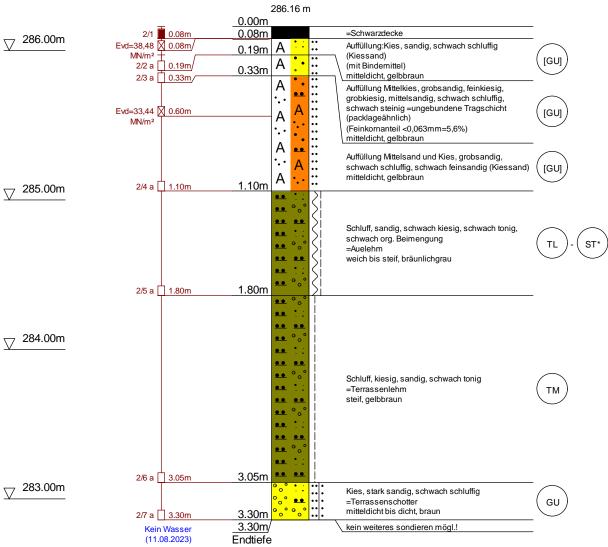
Maßstab:

2.2

1: 25

INGENIEURBÜRO
ECKERT
Crusiusstraße 7
09120 Chemnitz

Projekt : Große Kreisstadt Glauchau \ WAD GmbH


Glauchau, Pestalozzistr. - ENB AW-Kanal + Straßenausbau

Projektnr.: 08371-118 \ 16788/40139 \ Gö-11.- 14.08.2023 \ 260

Anlage : 2.3 Maßstab : 1: 25

GmbH

2a - A/RKS

Große Kreisstadt Glauchau \ WAD GmbH Projekt INGENIEURBÜRO Glauchau, Pestalozzistr. - ENB AW-Kanal + Straßenausbau ECKER 08371-118 \ 16788/40139 \ Gö-11.- 14.08.2023 \ 260 Projektnr.: GmbH Anlage 2.4 Crusiusstraße 7 1: 25 Maßstab: 09120 Chemnitz 2b - A/RKS 0.00m 2/1 0.08m Evd=38,48 0.08m/ MN/m² 0.08m =Schwarzdecke √ 286.00m Auffüllung: Kies, sandig, schwach schluffig Α 0.19m (Kiessand) 8/2 b 0.19m/ (mit Bindemittel) 0.33m mitteldicht, gelbbraun 2/3 b 0.33m Α Auffüllung Mittelkies, grobsandig, feinkiesig, grobkiesig, mittelsandig, schwach schluffig, schwach steinig =ungebundene Tragschicht (packlageähnlich) Evd=33,44 💢 0.60m Α MN/m² (Feinkornanteil <0,063mm=5,6%) mitteldicht, gelbbraun Α Auffüllung Mittelsand und Kies, grobsandig, schwach schluffig, schwach feinsandig (Kiessand) Α mitteldicht, gelbbraun 1.10m 2/4 b 1.10m Schluff, sandig, schwach kiesig, schwach tonig, schwach org. Beimengung weich bis steif, bräunlichgrau 2/5 b 1.80m 1.80m ∑ 284.00m • •

2/6 b 3.05m

2/7 b 3.30m

Kein Wasser (11.08.2023)

____283.00m

[GU]

[GU]

[GU]

ТМ

GU

Schluff, kiesig, sandig, schwach tonig

Kies, stark sandig, schwach schluffig

kein weiteres sondieren mögl.!

=Terrassenlehm

steif, gelbbraun

=Terrassenschotte mitteldicht bis dicht, braun

• • • •

3.30m 3.30m/

Endtiefe

ST'

Große Kreisstadt Glauchau \ WAD GmbH Projekt INGENIEURBÜRO Glauchau, Pestalozzistr. - ENB AW-Kanal + Straßenausbau **ECKERT** 08371-118 \ 16788/40139 \ Gö-11.- 14.08.2023 \ 260 Projektnr.: GmbH Anlage 2.5 Crusiusstraße 7 1: 25 Maßstab: 09120 Chemnitz 3a - A/RKS 0.00m 3/1 0.01m 0.01m =Schwarzdecke 1 3/2 0.03m/ 3/3 0.09m/ 3/4 0.15m/ 0.03m =Schwarzdecke 2 0.09m =Schwarzdecke 3 =Schwarzdecke 4 _0.15m/ □° (auffälliger Geruch) √ 287.00m Α Auffüllung:Steine, kiesig, sandig, schwach schluffig 0.50m 3/5 a 0.50m =Packlage (schlecht lösbar!) .. dicht, gelbgrau Α Auffüllung:Sand, kiesig, schwach schluffig =Bauschutt und Müll / Abfall (Schlacke, Ziegel, Keramik, Achse, Kohle) Α • • locker bis mitteldicht, schwarzgrau Α Α 1.25m 3/6 a 1.25m Auffüllung:Schluff, kiesig, sandig, schwach tonig Α =Aushub <u></u> 286.00m (mit Bauschutt) 3/7 a 1.50m 1.50m steif, braun √ 285.00m Schluff, sandig bis stark sandig, schwach kiesig, schwach tonig =Terrassenlehm steif, gelbbraun ∑ 284.00m 3/8 a 4.05m 4.05m Kein Wasser (11.08.2023) 4.05m/ kein weiteres sondieren mögl.! Endtiefe

[TL]

 TM

Große Kreisstadt Glauchau \ WAD GmbH Projekt INGENIEURBÜRO Glauchau, Pestalozzistr. - ENB AW-Kanal + Straßenausbau **ECKERT** 08371-118 \ 16788/40139 \ Gö-11.- 14.08.2023 \ 260 Projektnr.: GmbH Anlage 2.6 Crusiusstraße 7 1: 25 Maßstab: 09120 Chemnitz 3b - A/RKS 0.00m 3/1 0.01m 0.01m =Schwarzdecke 1 3/2 0.03m 3/3 0.09m/ 3/4 0.15m/ 0.03m =Schwarzdecke 2 0.09m A =Schwarzdecke 3 =Schwarzdecke 4 _0.15m/ □% (auffälliger Geruch) √ 287.00m Α Auffüllung:Steine, kiesig, sandig, schwach schluffig 0.50m 3/5 b 0.50m =Packlage (schlecht lösbar!) • • dicht, gelbgrau Α Auffüllung:Sand, kiesig, schwach schluffig =Bauschutt und Müll / Abfall (Schlacke, Ziegel, Keramik, Achse, Kohle) Α • • locker bis mitteldicht, schwarzgrau Α 1.25m 3/6 b 1.25m Auffüllung:Schluff, kiesig, sandig, schwach tonig Α [TL] <u></u> 286.00m (mit Bauschutt) 3/7 b 1.50m 1.50m steif, braun •• √ 285.00m • • Schluff, sandig bis stark sandig, schwach kiesig, schwach tonig =Terrassenlehm • • steif, gelbbraun • • ∑ 284.00m 3/8 b 4.05m 4.05m Kein Wasser (11.08.2023) 4.05m/ kein weiteres sondieren mögl.! Endtiefe

TM

Große Kreisstadt Glauchau \ WAD GmbH Projekt INGENIEURBÜRO Glauchau, Pestalozzistr. - ENB AW-Kanal + Straßenausbau **ECKERT** 08371-118 \ 16788/40139 \ Gö-11.- 14.08.2023 \ 260 Projektnr.: GmbH Anlage 2.7 Crusiusstraße 7 1: 25 Maßstab: 09120 Chemnitz 4a - A/RKS 289.07 m ∑_ 289.00m 0.00m 4/1 **0.04m** 0.04m =Schwarzdecke 1 4/2 0.10m 4/3 a 0.11m/ 0.10m/ =Schwarzdecke 2 (auffälliger Geruch) 0.11m 4/4 a 0.25m Evd=59,36 0.25m $\hbox{\it Auff\"{u}llung:} Kies, sandig, schwach schluffig$ _0.25m/ A Α =Fräsgut MN/m² 9 locker bis mitteldicht, schwarzgrau 0.50m 4/5 a 🗍 0.50m Pflastersteine = Granit und (Kiessand) Evd=13,51 0.50m/ Α Auffüllung Grobkies, mittelkiesig, schwach feinkiesig, schwach schluffig, schwach grobsandig, MN/m² sehr schwach mittelsandig [GU] Α =ungebundene Tragschicht (Feinkornanteil <0,063mm=11,5%) • • mitteldicht, braun ∑ 288.00m Α • • Α ${\it Auff\"ullung Schluff}, sandig, kiesig, schwach tonig$ [TL] Α (mit Bauschutt) weich, gelbbraun, graubraun •• Α 1.75m 4/6 a 1.75m •• ∑_ 287.00m •• • • •• •• • • • • •• • • •• Schluff, sandig, kiesig.schwach tonig =Terrassenlehm ТМ •• √ 286.00m steif, gelbbraun •• • • •• •• •• √ 285.00m 4/7 a 4.10m 4.10m 4.10m/ nur noch schwer sondierbar! Kein Wasser (14.08.2023) Endtiefe

Große Kreisstadt Glauchau \ WAD GmbH Projekt INGENIEURBÜRO Glauchau, Pestalozzistr. - ENB AW-Kanal + Straßenausbau **ECKERT** 08371-118 \ 16788/40139 \ Gö-11.- 14.08.2023 \ 260 Projektnr.: GmbH Anlage 2.8 Crusiusstraße 7 1: 25 Maßstab: 09120 Chemnitz 4b - A/RKS 289.07 m ∑_ 289.00m 0.00m 4/1 **0.04m** 0.04m =Schwarzdecke 1 4/2 0.10m 4/3 b 0.11m/ 0.10m/ =Schwarzdecke 2 (auffälliger Geruch) 0.11m 4/4 b 0.25m Evd=59,36 0.25m $\hbox{\it Auff\"{u}llung:} Kies, sandig, schwach schluffig$ _0.25m/ A Α =Fräsgut MN/m² 9 locker bis mitteldicht, schwarzgrau 0.50m 4/5 b 0.50m Pflastersteine = Granit und (Kiessand) Evd=13,51 0.50m/ Α Auffüllung Grobkies, mittelkiesig, schwach feinkiesig, schwach schluffig, schwach grobsandig, MN/m² sehr schwach mittelsandig [GU] Α =ungebundene Tragschicht (Feinkornanteil <0,063mm=11,5%) • • mitteldicht, braun ∑ 288.00m Α • • Α ${\it Auff\"ullung Schluff}, sandig, kiesig, schwach tonig$ [TL] Α (mit Bauschutt) weich, gelbbraun, graubraun •• Α 1.75m 4/6 b 1.75m •• ∑_ 287.00m •• •• •• •• • • • • •• • • •• Schluff, sandig, kiesig.schwach tonig =Terrassenlehm ТМ •• √ 286.00m steif, gelbbraun •• • • •• •• •• √ 285.00m 4/7 b 4.10m 4.10m 4.10m/ nur noch schwer sondierbar! Kein Wasser (14.08.2023) Endtiefe

Große Kreisstadt Glauchau \ WAD GmbH Projekt INGENIEURBÜRO Glauchau, Pestalozzistr. - ENB AW-Kanal + Straßenausbau **ECKERT** 08371-118 \ 16788/40139 \ Gö-11.- 14.08.2023 \ 260 Projektnr.: GmbH Anlage 2.9 Crusiusstraße 7 1: 25 Maßstab: 09120 Chemnitz 5a - A/RKS 0.00m 5/1 0.03m 5/2 0.08m 0.03m =Schwarzdecke 1 0.08 m/=Schwarzdecke 2 289.00m Evd=51,09 0.19m (auffälliger Geruch) 0.19m/ A . MN/m² Pflastersteine =Granit 0.40m \□ % Auffüllung:Steine, kiesig, sandig =Packlage und (Kiessand) 5/3 a 0.40m mitteldicht bis dicht, braun • • Evd=15,20 0.60m MN/m² • • Schluff, sandig, schwach tonig, schwach org. •• • • Beimengung ST' =Hanglehm steif bis halbfest, bräunlichgrau •• • • 288.00m 5/4 a 1.30m 1.30m • • • • •• •• •• •• •• <u></u> 287.00m •• •• •• •• •• •• Schluff, sandig, kiesig, schwach tonig =Terrassenlehm steif, gelbbraun • • • • <u></u> 286.00m • • • • •• •• •• 5/5 a 4.10m 4.10m nur noch sehr schwer sond.! 4.10m/ Kein Wasser (14.08.2023) Endtiefe

Große Kreisstadt Glauchau \ WAD GmbH Projekt INGENIEURBÜRO Glauchau, Pestalozzistr. - ENB AW-Kanal + Straßenausbau **ECKERT** 08371-118 \ 16788/40139 \ Gö-11.- 14.08.2023 \ 260 Projektnr.: GmbH Anlage 2.10 Crusiusstraße 7 1: 25 Maßstab: 09120 Chemnitz 5b - A/RKS 0.00m 5/1 0.03m 5/2 0.08m 0.03m =Schwarzdecke 1 0.08 m/=Schwarzdecke 2 289.00m Evd=51,09 0.19m (auffälliger Geruch) 0.19m/ A . MN/m² Pflastersteine =Granit 0.40m \□ % Auffüllung:Steine, kiesig, sandig =Packlage und (Kiessand) 5/3 b 0.40m mitteldicht bis dicht, braun • • Evd=15,20 0.60m MN/m² • • Schluff, sandig, schwach tonig, schwach org. •• • • Beimengung ST' =Hanglehm steif bis halbfest, bräunlichgrau •• • • 288.00m 5/4 b 1.30m 1.30m • • • • •• •• •• •• •• <u></u> 287.00m •• •• •• •• •• •• Schluff, sandig, kiesig, schwach tonig =Terrassenlehm •• steif, gelbbraun • • • • <u></u> 286.00m • • • • •• •• •• 5/5 b 4.10m 4.10m 4.10m/ nur noch sehr schwer sond.! Kein Wasser (14.08.2023) Endtiefe

Große Kreisstadt Glauchau \ WAD GmbH Projekt INGENIEURBÜRO Glauchau, Pestalozzistr. - ENB AW-Kanal + Straßenausbau **ECKERT** 08371-118 \ 16788/40139 \ Gö-11.- 14.08.2023 \ 260 Projektnr.: GmbH Anlage 2.11 Crusiusstraße 7 1: 25 Maßstab: 09120 Chemnitz 6a - A/RKS 289.10 m 0.00m 6/1 0.03m 6/2 0.08m <u></u> 289.00m 0.03m =Schwarzdecke 1 0.08m =Schwarzdecke 2 6/3 <u>0.13m</u>/ 0.13m =Schwarzdecke 3 6/4 a 0.25m Auffüllung:Kies, sandig, schwach schluffig 0.25m/ A [GU] =ungebundene Tragschicht 6/5 a 0.40m 0.40m mitteldicht bis dicht, gelb Auffüllung:Steine, kiesig, sandig, schwach tonig =ungebundene Tragschicht (packlageähnlich) mitteldicht bis dicht, gelb <u></u> 288.00m Schluff, sandig, schwach tonig, schwach org. Beimengung =Auelehm ST* weich bis steif, braungrau, grau √ 287.00m 6/6 a 2.80m 2.80m <u></u> 286.00m Schluff, sandig, kiesig, schwach tonig =Terrassenlehm steif, gelbbraun 285.00m 6/7 a 4.10m 4.10m 4.10m/ nur noch schwer sondierbar! Kein Wasser (14.08.2023) Endtiefe

Große Kreisstadt Glauchau \ WAD GmbH Projekt INGENIEURBÜRO Glauchau, Pestalozzistr. - ENB AW-Kanal + Straßenausbau **ECKERT** 08371-118 \ 16788/40139 \ Gö-11.- 14.08.2023 \ 260 Projektnr.: GmbH Anlage 2.12 Crusiusstraße 7 1: 25 Maßstab: 09120 Chemnitz 6b - A/RKS 289.10 m 0.00m <u></u> 289.00m 6/1 0.03m 6/2 0.08m 0.03m =Schwarzdecke 1 0.08m =Schwarzdecke 2 0.13m/ =Schwarzdecke 3 0.13m/ 6/4 b 0.25m Auffüllung:Kies, sandig, schwach schluffig _0.25m/ A [GU] =ungebundene Tragschicht 6/5 b 0.40m 0.40m mitteldicht bis dicht, gelb Auffüllung:Steine, kiesig, sandig, schwach tonig =ungebundene Tragschicht (packlageähnlich) mitteldicht bis dicht, gelb <u></u> 288.00m Schluff, sandig, schwach tonig, schwach org. Beimengung =Auelehm ST* weich bis steif, braungrau, grau √ 287.00m 6/6 b 2.80m 2.80m <u></u> 286.00m Schluff, sandig, kiesig, schwach tonig =Terrassenlehm steif, gelbbraun 285.00m 6/7 b 4.10m 4.10m 4.10m/ nur noch schwer sondierbar! Kein Wasser (14.08.2023) Endtiefe

Projekt: Große Kreisstadt Glauchau - WAD GmbH \ Glauchau, Pestalozzistraße INGENIEURBÜRO Kornverteilung Projektnr.: 08371-118 \ 16788/40139 \ ENB AW-Kanal + Straßenausbau ECKERT GmbH Crusiusstraße 7 Datum: **DIN EN ISO 17892-4** 21.09.2023 09120 Chemnitz Anlage: 3.1 - Blatt 1 Schluff Kies Steine Ton Sand Fein-Mittel-Grob-Fein-Mittel-Grob-Fein-Mittel-Grob-100 100//100 90 80 70 60 Massenprozent Frostschutzschicht 0/45 nach ZTV SoB-\$tB 20 30 20 10 0 0.02 0.6 2 20 0.002 0.006 0.06 0.2 60 Korndurchmesser in mm KV 1 (581) – KV 2 (582) Labornummer Entnahmestelle 2/3 a+b 4/5 a+b Entnahmetiefe 0,19 - 0,33 m 0,25 - 0,50 m Ungleichförm. U 24.5 Krümmungszahl Cc 0.5 d10 / d60 0.209/5.126 mm - /19.999 mm Frostempfindl.klasse F2 F2 ungebundene Tragschicht ungebundene Tragschicht Bodenansprache 5.6 % Anteil < 0.063 mm 11.5 % Wassergehalt 4.5 % 3.4 %

DC

Projekt: Große Kreisstadt Glauchau - WAD GmbH \ Glauchau, Pestalozzistraße INGENIEURBÜRO Kornverteilung Projektnr.: 08371-118 \ 16788/40139 \ ENB AW-Kanal + Straßenausbau ECKERT GmbH Crusiusstraße 7 Datum: **DIN EN ISO 17892-4** 21.09.2023 09120 Chemnitz Anlage: 3.1 - Blatt 2 Schluff Kies Steine Ton Sand Fein-Mittel-Grob-Fein-Mittel-Grob-Fein-Mittel-Grob-100 90 80 70 60 Massenprozent 30 20 10 0 0.02 0.6 2 20 0.002 0.006 0.06 0.2 60 Korndurchmesser in mm KV 3 (583) - KV 4 (584) Labornummer Entnahmestelle 2/4 a+b 4/6 a+b Entnahmetiefe 0,33 - 1,10 m 0,50 - 1,75 m Ungleichförm. U 19.8 Krümmungszahl Cc 0.6 d10 / d60 0.159/3.149 mm - /0.053 mm Frostempfindl.klasse F2 F3 Auffüllung (Kiessand) Auffüllung (Aushub) Bodenansprache Anteil < 0.063 mm 6.9 % 61.8 % Wassergehalt 4.6 % 17.1 %

DC

Projekt: Große Kreisstadt Glauchau - WAD GmbH \ Glauchau, Pestalozzistraße INGENIEURBÜRO Kornverteilung Projektnr.: 08371-118 \ 16788/40139 \ ENB AW-Kanal + Straßenausbau ECKERT GmbH Crusiusstraße 7 Datum: **DIN EN ISO 17892-4** 21.09.2023 09120 Chemnitz Anlage: 3.1 - Blatt 3 Schluff Kies Steine Ton Sand Fein-Mittel-Grob-Fein-Mittel-Grob-Fein-Mittel-Grob-100 90 80 70 60 Massenprozent 30 20 10 0 0.02 0.6 2 20 0.002 0.006 0.06 0.2 60 Korndurchmesser in mm KV 5 (585) - KV 6 (586) Labornummer Entnahmestelle 1/6 a+b 1/7 a+b Entnahmetiefe 0,55 - 1,50 m 1,50 - 4,10 m Ungleichförm. U 348.1 Krümmungszahl Cc 0.3 d10 / d60 - /0.227 mm 0.004/1.366 mm F3 F3 Frostempfindl.klasse Bodenansprache Terrassenlehm Terrassenschotter Anteil < 0.063 mm 51.7 % 32.3 % Wassergehalt 17.2 % 9.3 % DC

GmbH Crusiusstraße 7 09120 Chemnitz

09120 Chemnitz

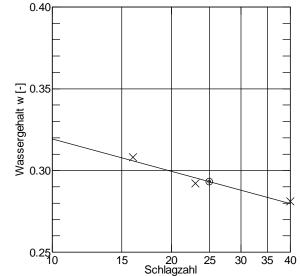
Zustandsgrenzen

DIN EN ISO 17892-12

Entnahmestelle: 6/6 a+b
Ausgef. durch : Weber

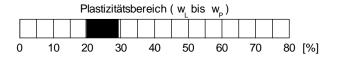
Projekt : Stadt Glauchau - WAD GmbH \ Glauchau, Pestalozzis
Projektnr. : 08371-118 \ 16788/40139 \ ENB AW-Kanal + Straße
Anlage : 3.2 - Blatt 1

Datum : 19.09.2023


Labornummer: Wz 1 (587)
Tiefe : 0,40 - 2,80 m

Bodenart : Auelehm

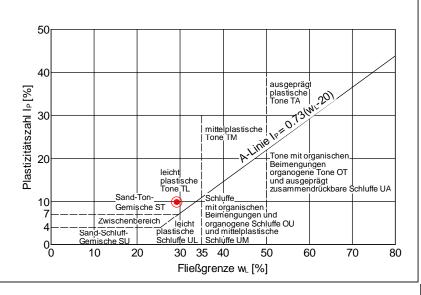
Art der Entn. : gestört


Entn. am : 08/2023

		Fließgrenze				Ausrollgrenze					
Behälter-Nr.		1	2	3			18	19	20		
Zahl der Schläge		16	40	23							
Feuchte Probe + Behälter	$m_f + m_B [g]$	47.35	42.05	42.24			46.58	50.01	47.26		
Trockene Probe + Behälter	m _t + m _B [g]	42.51	38.34	38.27			45.42	48.77	46.00		
Behälter	m _B [g]	26.78	25.12	24.66			39.42	42.37	39.53		
Wasser	$m_f - m_t = m_w [g]$	4.84	3.71	3.98			1.17	1.24	1.26		
Trockene Probe	m _t [g]	15.73	13.22	13.61			6.00	6.40	6.47	Mittel	
Wassergehalt $\frac{m_w}{m_t}$ = w	[-]	0.308	0.281	0.292			0.195	0.194	0.195	0.195	

Wassergehalt $w_N^u = 0.191, w_{N\ddot{u}} = 0.206$

Fließgrenze $\overrightarrow{w_L} = 0.293$ Ausrollgrenze $\overrightarrow{w_B} = 0.195$



Plastizitätszahl $I_p = w_L - w_P = 0.098$

Liquiditätsindex $I_L = \frac{W_{N\ddot{u}} - W_P}{I_L} = 0.112$

Konsistenzzahl $I_C = \frac{W_L - W_{N\ddot{u}}}{I_C} = 0.888$

INGENIEURBÜRO **ECKER**

GmbH Crusiusstraße 7 09120 Chemnitz

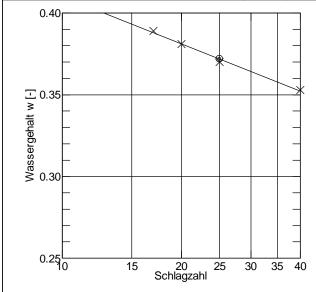
Zustandsgrenzen DIN EN ISO 17892-12

Entnahmestelle: 5/5 a+ b Ausgef. durch : Weber

Projekt	:	Stadt Glauchau - WAD GmbH \ Glauchau, Pestalozzis
Projektnr.	:	08371-118 \ 16788/40139 \ ENB AW-Kanal + Straße
Anlago		2.2 Platt 2

3.2 - Blatt 2 Anlage 21.09.2023

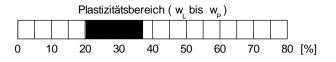
Wz 2 (588) Labornummer:


Datum

Tiefe : 0,40 - 1,30 m

: Terrassenlehm Bodenart

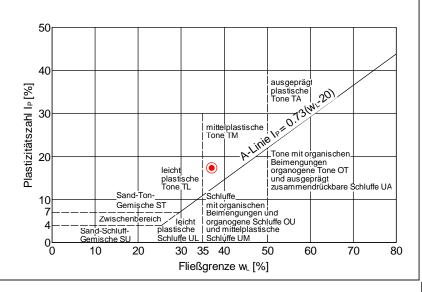
Art der Entn. : gestört Entn. am : 08/2023

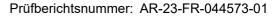

		Fließgrenze					Ausrollgrenze				
Behälter-Nr.		1	2	3	5		18	19	20		
Zahl der Schläge		17	20	25	40						
Feuchte Probe + Behälter	$m_f + m_B [g]$	40.15	41.41	40.33	43.20		45.65	51.97	46.15		
Trockene Probe + Behälter	m _t + m _B [g]	36.41	36.91	36.10	39.13		44.60	50.38	45.06		
Behälter	m _B [g]	26.78	25.12	24.66	27.59		39.42	42.37	39.53		
Wasser	$m_f - m_t = m_w [g]$	3.75	4.50	4.23	4.07		1.05	1.60	1.09		
Trockene Probe	m _t [g]	9.63	11.80	11.44	11.54		5.19	8.00	5.53	Mittel	
Wassergehalt $\frac{m_w}{m_t}$ = w	[-]	0.389	0.381	0.370	0.353		0.202	0.199	0.196	0.199	

Überkornanteil $\ddot{u} = 0.154$ $w_{_{ij}} = 0.040$ Wassergeh. Überkorn

Wassergehalt $W_N^u = 0.162, W_{N\ddot{u}} = 0.184$

Fließgrenze = 0.372Ausrollgrenze = 0.199




Plastizitätszahl $I_p = w_L - w_P = 0.173$

Liquiditätsindex $I_L = \frac{W_{N\ddot{u}} - W_P}{I} = -0.087$

Konsistenzzahl $I_{c} = \frac{W_{L} - W_{N\ddot{u}}}{I_{p}} = 1.087$

Seite 1 von 2

Eurofins Umwelt Ost GmbH - Lindenstraße 11 - Gewerbegebiet Freiberg Ost - D-09627 Bobritzsch-Hilbersdorf

Ingenieurbüro ECKERT GmbH Crusiusstraße 7 09120 Chemnitz

Titel: Prüfbericht zu Auftrag 12340023

Prüfberichtsnummer: AR-23-FR-044573-01

Auftragsbezeichnung: Reg.-Nr.: 08371-118, Proj.-Nr.: 16788/4013

Anzahl Proben: 3

Probenart: Straßenbelag

Probenehmer: keine Angabe, Probe(n) wurde(n) an das Labor ausgehändigt

Probeneingangsdatum: 13.09.2023

Prüfzeitraum: 13.09.2023 - 25.09.2023

Die Prüfergebnisse beziehen sich ausschließlich auf die untersuchten Prüfgegenstände. Sofern die Probenahme nicht durch unser Labor oder in unserem Auftrag erfolgte, wird hierfür keine Gewähr übernommen. Dieser Prüfbericht enthält eine qualifizierte elektronische Signatur und darf nur vollständig und unverändert weiterverbreitet werden. Auszüge oder Änderungen bedürfen in jedem Einzelfall der Genehmigung der EUROFINS UMWELT.

Es gelten die Allgemeinen Verkaufsbedingungen (AVB), sofern nicht andere Regelungen vereinbart sind. Die aktuellen AVB können Sie unter http://www.eurofins.de/umwelt/avb.aspx einsehen.

Das beauftragte Prüflaboratorium ist durch die DAkkS nach DIN EN ISO/IEC 17025:2018 DAkkS akkreditiert. Die Akkreditierung gilt nur für den in der Urkundenanlage (D-PL-14081-01-00) aufgeführten Umfang.

Anhänge:

XML_Export_AR-23-FR-044573-01.xml

Mario Thielemann
Prüfleitung (Chemnitz)

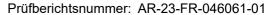
+49 371 3343560

Digital signiert, 25.09.2023 Mario Thielemann Prüfleitung (Chemnitz)

			Probenbeze	ichnung	SD 1	SD 2 (3/4)	SD 3 (4/3a/b)
			Probennum	mer	123143065	123143066	123143067
Lab.	Akkr.	Methode	BG	Einheit			
nngrö	ßen au	is der Originalsubs	tanz	•	1		
FR	F5	DIN EN 14346: 2007-03	0,1	Ma%	99,0	99,2	96,0
ınz						•	
FR	F5	DIN ISO 18287: 2006-05	0,5	mg/kg TS	< 0,5	< 50 ¹⁾	< 0,5
FR	F5	DIN ISO 18287: 2006-05	0,5	mg/kg TS	< 0,5	< 50 ¹⁾	1,2
FR	F5	DIN ISO 18287: 2006-05	0,5	mg/kg TS	3,4	260 ¹⁾	6,2
FR	F5	DIN ISO 18287: 2006-05	0,5	mg/kg TS	4,6	190 ¹⁾	6,7
FR	F5	DIN ISO 18287: 2006-05	0,5	mg/kg TS	16	940 ¹⁾	64
FR	F5	DIN ISO 18287: 2006-05	0,5	mg/kg TS	4,8	430 ¹⁾	44
FR	F5	DIN ISO 18287: 2006-05	0,5	mg/kg TS	22	1500 ¹⁾	360
FR	F5	DIN ISO 18287: 2006-05	0,5	mg/kg TS	13	1100 ¹⁾	270
FR	F5	DIN ISO 18287: 2006-05	0,5	mg/kg TS	8,6	450 ¹⁾	150
FR	F5	DIN ISO 18287: 2006-05	0,5	mg/kg TS	6,7	300 ¹⁾	120
FR	F5	DIN ISO 18287: 2006-05	0,5	mg/kg TS	9,5	440 ¹⁾	140
FR	F5	DIN ISO 18287: 2006-05	0,5	mg/kg TS	3,8	200 ¹⁾	51
FR	F5	DIN ISO 18287: 2006-05	0,5	mg/kg TS	6,0	390 ¹⁾	110
FR	F5	DIN ISO 18287: 2006-05	0,5	mg/kg TS	3,9	290 ¹⁾	71
FR	F5	DIN ISO 18287: 2006-05	0,5	mg/kg TS	1,3	< 50 ¹⁾	17
FR	F5	DIN ISO 18287: 2006-05	0,5	mg/kg TS	3,4	230 ¹⁾	66
FR	F5	DIN ISO 18287: 2006-05		mg/kg TS	107	6720	1480
FR	F5	DIN ISO 18287: 2006-05		mg/kg TS	107	6720	1480
s dem	10:1-S	chütteleluat nach D	OIN EN 12457	-4: 2003-01		-	
FR	F5	DIN EN ISO 14402 (H37): 1999-12	0,01	mg/l	< 0,01	0,01	< 0,01
	nngrö FR	FR F5	FR F5 DIN ISO 18287: 2006-05	Lab. Akkr. Methode BG	FR F5 DIN ISO 18287: 2006-05 0,5 mg/kg TS FR F5 DIN ISO 18287: 2006-05 0,5 mg/kg TS	Probennummer 123143065 Lab. Akkr. Methode BG Einheit Einheit	Probennummer 123143065 123143066

Erläuterungen

BG - Bestimmungsgrenze


Lab. - Kürzel des durchführenden Labors

Akkr. - Akkreditierungskürzel des Prüflabors

Kommentare zu Ergebnissen

Die mit FR gekennzeichneten Parameter wurden von der Eurofins Umwelt Ost GmbH (Lindenstraße 11, Gewerbegebiet Freiberg Ost, Bobritzsch-Hilbersdorf) analysiert. Die Bestimmung der mit F5 gekennzeichneten Parameter ist nach DIN EN ISO/IEC 17025:2018 DAkkS D-PL-14081-01-00 akkreditiert.

¹⁾ Die Bestimmungsgrenze musste erhöht werden, da eine hohe Belastung einzelner Analyten eine Vermessung in der unverdünnten Analyse nicht erlaubte.

Seite 1 von 4

Eurofins Umwelt Ost GmbH - Lindenstraße 11 - Gewerbegebiet Freiberg Ost - D-09627 Bobritzsch-Hilbersdorf

Ingenieurbüro ECKERT GmbH Crusiusstraße 7 09120 Chemnitz

Titel: Prüfbericht zu Auftrag 12340033

Prüfberichtsnummer: AR-23-FR-046061-01

Auftragsbezeichnung: Reg.-Nr.: 08371-118, Proj.-Nr.: 16788/4013

Anzahl Proben: 1

Probenart: Bauschutt / Bausubstanz

Probenehmer: keine Angabe, Probe(n) wurde(n) an das Labor ausgehändigt

Probeneingangsdatum: 13.09.2023

Prüfzeitraum: 13.09.2023 - 05.10.2023

Die Prüfergebnisse beziehen sich ausschließlich auf die untersuchten Prüfgegenstände. Sofern die Probenahme nicht durch unser Labor oder in unserem Auftrag erfolgte, wird hierfür keine Gewähr übernommen. Dieser Prüfbericht enthält eine qualifizierte elektronische Signatur und darf nur vollständig und unverändert weiterverbreitet werden. Auszüge oder Änderungen bedürfen in jedem Einzelfall der Genehmigung der EUROFINS UMWELT.

Es gelten die Allgemeinen Verkaufsbedingungen (AVB), sofern nicht andere Regelungen vereinbart sind. Die aktuellen AVB können Sie unter http://www.eurofins.de/umwelt/avb.aspx einsehen.

Das beauftragte Prüflaboratorium ist durch die DAkkS nach DIN EN ISO/IEC 17025:2018 DAkkS akkreditiert. Die Akkreditierung gilt nur für den in der Urkundenanlage (D-PL-14081-01-00) aufgeführten Umfang.

Anhänge:

XML_Export_AR-23-FR-046061-01.xml

Mario Thielemann Prüfleitung (Chemnitz)

+49 371 3343560

Digital signiert, 05.10.2023 Mario Thielemann Prüfleitung (Chemnitz)

				Probenbeze	eichnung	Bscht. 1 (1/3)
				Probennum	ımer	123143106
Parameter	Lab.	Akkr.	Methode	BG	Einheit	
Probenvorbereitung Feststo	ffe					
Königswasseraufschluss (angewandte Methode)	FR	F5	L8:DIN EN 13657:2003-01;F5:DIN EN ISO 54321:2021-4			mittels thermoregu- lierbarem Graphitblock
Physikalisch-chemische Ke	nngrö	ßen au	ıs der Originalsubs	tanz		•
Trockenmasse	FR	F5	DIN EN 14346: 2007-03	0,1	Ma%	91,4
Elemente aus dem Königsw	asser	_ aufsch	luss nach DIN EN '	⊥ 13657: 2003-	 01	
Arsen (As)	FR	F5	DIN EN 16171:2017-01	0,8	mg/kg TS	16,9
Blei (Pb)	FR	F5	DIN EN 16171:2017-01	2	mg/kg TS	7
Cadmium (Cd)	FR	F5	DIN EN 16171:2017-01	0,2	mg/kg TS	< 0,2
Chrom (Cr)	FR	F5	DIN EN 16171:2017-01	1	mg/kg TS	38
Kupfer (Cu)	FR	F5	DIN EN 16171:2017-01	1	mg/kg TS	25
Nickel (Ni)	FR	F5	DIN EN 16171:2017-01	1	mg/kg TS	22
Quecksilber (Hg)	FR	F5	DIN EN 16171:2017-01	0.07	mg/kg TS	< 0.07
Thallium (TI)	FR	F5	DIN EN 16171:2017-01	0,2	mg/kg TS	< 0,2
Zink (Zn)	FR	F5	DIN EN 16171:2017-01	1	mg/kg TS	34
				'	mg/kg 10	04
Organische Summenparame	eter au	us aer	DIN EN 14039:			
Kohlenwasserstoffe C10-C22	FR	F5	2005-01/LAGA KW/04: 2019-09	40	mg/kg TS	< 40
Kohlenwasserstoffe C10-C40	FR	F5	DIN EN 14039: 2005-01/LAGA KW/04: 2019-09	40	mg/kg TS	100
PAK aus der Originalsubsta	nz					
Naphthalin	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05
Acenaphthylen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Acenaphthen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05
Fluoren	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,07
Phenanthren	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,16
Anthracen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Fluoranthen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Pyren	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05
Benzo[a]anthracen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Chrysen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Benzo[b]fluoranthen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05
Benzo[k]fluoranthen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05
Benzo[a]pyren	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Indeno[1,2,3-cd]pyren	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Dibenzo[a,h]anthracen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Benzo[ghi]perylen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05
Summe 16 PAK nach EBV: 2021	FR		berechnet	,	mg/kg TS	0,380
Summe 15 PAK ohne Naphthalin nach EBV: 2021	FR		berechnet		mg/kg TS	0,355

				Probenbezeichnung		Bscht. 1 (1/3)
				Probennumi	mer	123143106
Parameter	Lab.	Akkr.	Methode	BG	Einheit	
PCB aus der Originalsubsta	anz		l	-	1	
PCB 28	FR	F5	DIN EN 17322: 2021-03	0,01	mg/kg TS	n.n. ²⁾
PCB 52	FR	F5	DIN EN 17322: 2021-03	0,01	mg/kg TS	n.n. ²⁾
PCB 101	FR	F5	DIN EN 17322: 2021-03	0,01	mg/kg TS	n.n. ²⁾
PCB 153	FR	F5	DIN EN 17322: 2021-03	0,01	mg/kg TS	n.n. ²⁾
PCB 138	FR	F5	DIN EN 17322: 2021-03	0,01	mg/kg TS	n.n. ²⁾
PCB 180	FR	F5	DIN EN 17322: 2021-03	0,01	mg/kg TS	n.n. ²⁾
Summe 6 PCB nach EBV: 2021	FR		berechnet		mg/kg TS	(n. b.) 3)
PCB 118	FR	F5	DIN EN 17322: 2021-03	0,01	mg/kg TS	n.n. ²⁾
Summe 7 PCB nach EBV: 2021	FR		berechnet		mg/kg TS	(n. b.) ³⁾
Kenngr. d. Eluatherst. f. org	g., nich	t-flüch	it. Par. nach DIN 19	529: 2015-12		1
Trübung im Eluat nach DIN EN ISO 7027: 2000-04	FR	F5		10	FNU	< 10
Phys. Kenngr. a. d. 10:1-Sc	hüttele	luat n	DIN EN 12457-4:20)03-01 nach C	O2-Begas.	
pH-Wert	FR	F5	DIN EN ISO 10523 (C5): 2012-04			5,4
Temperatur pH-Wert	FR	F5	DIN 38404-4 (C4): 1976-12		°C	18,6
Leitfähigkeit bei 25°C	FR	F5	DIN EN 27888 (C8): 1993-11	5	μS/cm	602
Physikalisch-chem. Kenng	rößen a	aus de	m 2:1-Schüttelelua	t nach DIN 19	529: 2015-12	
pH-Wert	FR	F5	DIN EN ISO 10523 (C5): 2012-04			11,7
Temperatur pH-Wert	FR	F5	DIN 38404-4 (C4): 1976-12		°C	19,8
Leitfähigkeit bei 25°C	FR	F5	DIN EN 27888 (C8): 1993-11	5	μS/cm	1320
Anionen aus dem 2:1-Schü	ttelelu	at nacl	n DIN 19529: 2015-1	2		
Sulfat (SO4)	FR	F5	DIN EN ISO 10304-1 (D20): 2009-07	1,0	mg/l	92
Elemente aus dem 2:1-Sch	üttelelı	uat nac	ch DIN 19529: 2015-	12		
Chrom (Cr)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	0,006
Kupfer (Cu)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	< 0,001
Vanadium (V)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,002	mg/l	0,014

				Probenbezeichnung Probennummer		Bscht. 1 (1/3) 123143106
Parameter	Lab.	Akkr.	Methode	BG	Einheit	
PAK aus dem 2:1-Schüttele	luat na	ch DII	N 19529: 2015-12		•	
Naphthalin	FR	F5	DIN 38407-39 (F39): 2011-09	0,05	μg/l	0,14
Acenaphthylen	FR	F5	DIN 38407-39 (F39): 2011-09	0,05	μg/l	n.n. ²⁾
Acenaphthen	FR	F5	DIN 38407-39 (F39): 2011-09	0,05	μg/l	0,12
Fluoren	FR	F5	DIN 38407-39 (F39): 2011-09	0,05	μg/l	0,07
Phenanthren	FR	F5	DIN 38407-39 (F39): 2011-09	0,05	μg/l	0,06
Anthracen	FR	F5	DIN 38407-39 (F39): 2011-09	0,05	μg/l	n.n. ²⁾
Fluoranthen	FR	F5	DIN 38407-39 (F39): 2011-09	0,05	μg/l	n.n. ²⁾
Pyren	FR	F5	DIN 38407-39 (F39): 2011-09	0,05	μg/l	n.n. ²⁾
Benzo[a]anthracen	FR	F5	DIN 38407-39 (F39): 2011-09	0,05	μg/l	n.n. ²⁾
Chrysen	FR	F5	DIN 38407-39 (F39): 2011-09	0,05	μg/l	n.n. ²⁾
Benzo[b]fluoranthen	FR	F5	DIN 38407-39 (F39): 2011-09	0,05	μg/l	n.n. ²⁾
Benzo[k]fluoranthen	FR	F5	DIN 38407-39 (F39): 2011-09	0,05	μg/l	n.n. ²⁾
Benzo[a]pyren	FR	F5	DIN 38407-39 (F39): 2011-09	0,05	μg/l	n.n. ²⁾
Indeno[1,2,3-cd]pyren	FR	F5	DIN 38407-39 (F39): 2011-09	0,05	μg/l	n.n. ²⁾
Dibenzo[a,h]anthracen	FR	F5	DIN 38407-39 (F39): 2011-09	0,05	μg/l	n.n. ²⁾
Benzo[ghi]perylen	FR	F5	DIN 38407-39 (F39): 2011-09	0,05	μg/l	n.n. ²⁾
Summe 16 PAK nach EBV: 2021	FR		berechnet		μg/l	0,390
Summe 15 PAK ohne Naphthalin nach EBV: 2021	FR		berechnet		μg/l	0,250

Erläuterungen

BG - Bestimmungsgrenze

Lab. - Kürzel des durchführenden Labors

Akkr. - Akkreditierungskürzel des Prüflabors

Kommentare zu Ergebnissen

- Die Gleichwertigkeit zu DIN EN 13657: 2003-01 ist nachgewiesen. DIN EN ISO 54321:2021-04 wird als Referenzverfahren in der Methodensammlung FBU/LAGA Version 2.0 Stand 15.06.2021 ausdrücklich empfohlen. Zur Gleichwertigkeit von Aufschlussverfahren siehe für EBV: FAQ des LfU Bayern; für BBodSchV: §24.11.
- 2) nicht nachweisbar
- 3) nicht berechenbar

Die mit FR gekennzeichneten Parameter wurden von der Eurofins Umwelt Ost GmbH (Lindenstraße 11, Gewerbegebiet Freiberg Ost, Bobritzsch-Hilbersdorf) analysiert. Die Bestimmung der mit F5 gekennzeichneten Parameter ist nach DIN EN ISO/IEC 17025:2018 DAkkS D-PL-14081-01-00 akkreditiert.

Seite 1 von 7

Eurofins Umwelt Ost GmbH - Lindenstraße 11 - Gewerbegebiet Freiberg Ost - D-09627 Bobritzsch-Hilbersdorf

Ingenieurbüro ECKERT GmbH Crusiusstraße 7 09120 Chemnitz

Titel: Prüfbericht zu Auftrag 12340240

Prüfberichtsnummer: AR-23-FR-047112-01

Auftragsbezeichnung: Reg.-Nr.: 08371-118, Proj.-Nr.: 16788/4013

Anzahl Proben: 1

Probenart: Boden

Probenehmer: keine Angabe, Probe(n) wurde(n) an das Labor ausgehändigt

Probeneingangsdatum: 13.09.2023

Prüfzeitraum: 13.09.2023 - 11.10.2023

Kommentar: Glauchau, Pestalozzistraße von Chemnitzer Platz bis Wettiner Straße

ENB AW-Kanal \ Grundhafter Straßenausbau

Die Prüfergebnisse beziehen sich ausschließlich auf die untersuchten Prüfgegenstände. Sofern die Probenahme nicht durch unser Labor oder in unserem Auftrag erfolgte, wird hierfür keine Gewähr übernommen. Dieser Prüfbericht enthält eine qualifizierte elektronische Signatur und darf nur vollständig und unverändert weiterverbreitet werden. Auszüge oder Änderungen bedürfen in jedem Einzelfall der Genehmigung der EUROFINS UMWELT.

Es gelten die Allgemeinen Verkaufsbedingungen (AVB), sofern nicht andere Regelungen vereinbart sind. Die aktuellen AVB können Sie unter http://www.eurofins.de/umwelt/avb.aspx einsehen.

Das beauftragte Prüflaboratorium ist durch die DAkkS nach DIN EN ISO/IEC 17025:2018 DAkkS akkreditiert. Die Akkreditierung gilt nur für den in der Urkundenanlage (D-PL-14081-01-00) aufgeführten Umfang.

Anhänge:

XML_Export_AR-23-FR-047112-01.xml

Mario Thielemann Prüfleitung (Chemnitz)

+49 371 3343560

Digital signiert, 11.10.2023 Mario Thielemann Prüfleitung (Chemnitz)

Eurofins Umwelt Ost GmbH

Löbstedter Strasse 78 D-07749 Jena Tel. +49 3641 4649 0
Fax +493641464919
info_jena@eurofins.de
www.eurofins.de/umwelt

GF: Dr. Benno Schneider Axel Ulbricht, Matthias Prauser Amtsgericht Jena HRB 202596 USt.-ID.Nr. DE 151 28 1997

				Probenbezeichnung Probennummer		Bod 1 (LAGA) + Bod 5 (EBV) 123143905
Parameter	Lab.	Akkr.	Methode	BG	Einheit	
Probenvorbereitung Fests	toffe					
						mittels
Königswasseraufschluss (angewandte Methode)	FR	F5	L8:DIN EN 13657:2003-01;F5:DIN EN ISO 54321:2021-4			lierbarem Graphitblock
Probenmenge inkl. Verpackung	FR	F5	DIN 19747: 2009-07		kg	10,4
Fremdstoffe (Art)	FR	F5	DIN 19747: 2009-07			nein
Fremdstoffe (Menge)	FR	F5	DIN 19747: 2009-07		g	0,0
Siebrückstand > 10mm	FR	F5	DIN 19747: 2009-07			ja
Fremdstoffe (Anteil)	FR	F5	DIN 19747: 2009-07	0,1	%	< 0,1
Physikalisch-chemische K	Cenngrö	ßen au	ıs der Originalsubs	tanz		
Trockenmasse	FR	F5	DIN EN 14346: 2007-03	0,1	Ma%	94,6
Aussehen (qualitativ)	FR	F5	DIN EN ISO 14688-1: 2018-05			Boden ohne Fremdbe- standteile
Farbe qualit.	FR	F5	DIN EN ISO 14688-1: 2018-05			gemischt
Geruch (qualitativ)	FR	F5	DIN EN ISO 14688-1: 2018-05			ohne
Elemente aus dem Königs	wasser	aufsch	luss			
Arsen (As)	FR	F5	DIN EN 16171:2017-01	0,8	mg/kg TS	23,6
Arsen (As)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,8	mg/kg TS	23,6
Blei (Pb)	FR	F5	DIN EN 16171:2017-01	2	mg/kg TS	11
Blei (Pb)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	2	mg/kg TS	11
Cadmium (Cd)	FR	F5	DIN EN 16171:2017-01	0,2	mg/kg TS	< 0,2
Cadmium (Cd)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,2	mg/kg TS	< 0,2
Chrom (Cr)	FR	F5	DIN EN 16171:2017-01	1	mg/kg TS	18
Chrom (Cr)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	1	mg/kg TS	18
Kupfer (Cu)	FR	F5	DIN EN 16171:2017-01	1	mg/kg TS	24
Kupfer (Cu)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	1	mg/kg TS	24
Nickel (Ni)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	1	mg/kg TS	14
Nickel (Ni)	FR	F5	DIN EN 16171:2017-01	1	mg/kg TS	14
Quecksilber (Hg)	FR	F5	DIN EN 16171:2017-01	0,07	mg/kg TS	0,10
Quecksilber (Hg)	FR	F5	DIN EN ISO 12846 (E12): 2012-08	0,07	mg/kg TS	< 0,07
Thallium (TI)	FR	F5	DIN EN 16171:2017-01	0,2	mg/kg TS	< 0,2
Zink (Zn)	FR	F5	DIN EN 16171:2017-01	1	mg/kg TS	31
Zink (Zn)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	1	mg/kg TS	31

			Jiiiwoit .			
				Probenbeze	Bod 1 (LAGA) + Bod 5 (EBV)	
				Probennum	nmer	123143905
Parameter	Lab.	Akkr.	Methode	BG	Einheit	
Organische Summenparame	eter au	ıs der	Originalsubstanz			
тос	FR	F5	DIN EN 15936: 2012-11 (AN,L8: Ver.A; FG,F5: Ver.B)	0,1	Ma% TS	0,2
EOX	FR	F5	DIN 38414-17 (S17): 2017-01	1,0	mg/kg TS	< 1,0
Kohlenwasserstoffe C10-C22	FR	F5	DIN EN 14039: 2005-01/LAGA KW/04: 2019-09	40	mg/kg TS	< 40
Kohlenwasserstoffe C10-C40	FR	F5	DIN EN 14039: 2005-01/LAGA KW/04: 2019-09	40	mg/kg TS	< 40

				Probenbezei	Bod 1 (LAGA) + Bod 5 (EBV)	
				Probennum	ner	123143905
Parameter	Lab.	Akkr.	Methode	BG	Einheit	
PAK aus der Originalsubsta	anz					
Naphthalin	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Acenaphthylen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Acenaphthen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Fluoren	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Phenanthren	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Anthracen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Fluoranthen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Pyren	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Benzo[a]anthracen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Chrysen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Benzo[b]fluoranthen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05
Benzo[k]fluoranthen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05
Benzo[a]pyren	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05
Indeno[1,2,3-cd]pyren	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05
Dibenzo[a,h]anthracen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Benzo[ghi]perylen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05
Summe 16 EPA-PAK exkl. BG	FR	F5	DIN ISO 18287: 2006-05		mg/kg TS	(n. b.) ³⁾
Summe 15 PAK ohne Naphthalin exkl. BG	FR	F5	DIN ISO 18287: 2006-05		mg/kg TS	(n. b.) ³⁾
Naphthalin	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Acenaphthylen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Acenaphthen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Fluoren	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Phenanthren	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Anthracen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Fluoranthen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Pyren	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Benzo[a]anthracen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Chrysen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Benzo[b]fluoranthen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05
Benzo[k]fluoranthen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05
Benzo[a]pyren	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05
Indeno[1,2,3-cd]pyren	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05
Dibenzo[a,h]anthracen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Benzo[ghi]perylen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05
Summe 16 PAK nach EBV: 2021	FR		berechnet		mg/kg TS	0,125
Summe 15 PAK ohne Naphthalin nach EBV: 2021	FR		berechnet		mg/kg TS	0,125

				Probenbezei	chnung	Bod 1 (LAGA) + Bod 5 (EBV)
				Probennumn	ner	123143905
Parameter	Lab.	Akkr.	Methode	BG	Einheit	
PCB aus der Originalsubsta	nz					
PCB 28	FR	F5	DIN EN 17322: 2021-03	0,01	mg/kg TS	n.n. ²⁾
PCB 52	FR	F5	DIN EN 17322: 2021-03	0,01	mg/kg TS	n.n. ²⁾
PCB 101	FR	F5	DIN EN 17322: 2021-03	0,01	mg/kg TS	n.n. ²⁾
PCB 153	FR	F5	DIN EN 17322: 2021-03	0,01	mg/kg TS	n.n. ²⁾
PCB 138	FR	F5	DIN EN 17322: 2021-03	0,01	mg/kg TS	n.n. ²⁾
PCB 180	FR	F5	DIN EN 17322: 2021-03	0,01	mg/kg TS	< 0,01
Summe 6 PCB nach EBV: 2021	FR		berechnet		mg/kg TS	0,005
PCB 118	FR	F5	DIN EN 17322: 2021-03	0,01	mg/kg TS	n.n. ²⁾
Summe 7 PCB nach EBV: 2021	FR		berechnet		mg/kg TS	0,005
Kenngr. d. Eluatherst. f. org	., nich	t-flüch	t. Par. nach DIN 19	529: 2015-12		
Trübung im Eluat nach DIN EN ISO 7027: 2000-04	FR	F5		10	FNU	36
Physchem. Kenngrößen au	us den	n 10:1-	Schütteleluat nach	DIN EN 1245	7-4: 2003-01	
pH-Wert	FR	F5	DIN EN ISO 10523 (C5): 2012-04			9,7
Temperatur pH-Wert	FR	F5	DIN 38404-4 (C4): 1976-12		°C	20,9
Leitfähigkeit bei 25°C	FR	F5	DIN EN 27888 (C8): 1993-11	5	μS/cm	124
Physikalisch-chem. Kenngr	ößen a	aus de	m 2:1-Schütteleluat	nach DIN 19	529: 2015-12	
pH-Wert	FR	F5	DIN EN ISO 10523 (C5): 2012-04			8,8
Temperatur pH-Wert	FR	F5	DIN 38404-4 (C4): 1976-12		°C	20,9
Leitfähigkeit bei 25°C	FR	F5	DIN EN 27888 (C8): 1993-11	5	μS/cm	459
Anionen aus dem 10:1-Schi	ittelelu	uat nac	ch DIN EN 12457-4:	2003-01		
Chlorid (CI)	FR	F5	DIN EN ISO 10304-1 (D20): 2009-07	1,0	mg/l	5,9
Sulfat (SO4)	FR	F5	DIN EN ISO 10304-1 (D20): 2009-07	1,0	mg/l	13
Anionen aus dem 2:1-Schüt	telelua	at nach	n DIN 19529: 2015-1	2		
Sulfat (SO4)	FR	F5	DIN EN ISO 10304-1 (D20): 2009-07	1,0	mg/l	48
Elemente aus dem 10:1-Sch	üttele	luat na	ich DIN EN 12457-4	2003-01		
Arsen (As)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	0,062
Blei (Pb)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	< 0,001
Cadmium (Cd)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,0003	mg/l	< 0,0003
Chrom (Cr)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	0,001
Kupfer (Cu)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,005	mg/l	< 0,005
Nickel (Ni)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	< 0,001
Quecksilber (Hg)	FR	F5	DIN EN ISO 12846 (E12): 2012-08	0,0002	mg/l	< 0,0002
Zink (Zn)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,01	mg/l	< 0,01

				Probenbezei	chnung	Bod 1 (LAGA) + Bod 5 (EBV)	
				Probennumn	ner	123143905	
Parameter	Lab.		Methode	BG	Einheit		
Elemente aus dem 2:1-Schü	ittelelu	ıat nac		12	I		
Arsen (As)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	0,069	
Blei (Pb)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	0,018	
Cadmium (Cd)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,0003	mg/l	< 0,0003	
Chrom (Cr)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	0,011	
Kupfer (Cu)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	0,019	
Nickel (Ni)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	0,008	
Quecksilber (Hg)	FR	F5	DIN EN ISO 12846 (E12): 2012-08	0,0001	mg/l	< 0,0001	
Thallium (TI)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,0002	mg/l	< 0,0002	
Zink (Zn)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,01	mg/l	0,08	
PAK aus dem 2:1-Schüttele	luat na	ach DIN	N 19529: 2015-12	l			
Naphthalin	FR	F5	DIN 38407-39 (F39): 2011-09	0,05	μg/l	n.n. ²⁾	
Acenaphthylen	FR	F5	DIN 38407-39 (F39): 2011-09	0,03	μg/l	n.n. ²⁾	
Acenaphthen	FR	F5	DIN 38407-39 (F39): 2011-09	0,02	μg/l	0,06	
Fluoren	FR	F5	DIN 38407-39 (F39): 2011-09	0,01	μg/l	< 0,01	
Phenanthren	FR	F5	DIN 38407-39 (F39): 2011-09	0,02	μg/l	0,04	
Anthracen	FR	F5	DIN 38407-39 (F39): 2011-09	0,008	μg/l	0,035	
Pyren	FR	F5	DIN 38407-39 (F39): 2011-09	0,01	μg/l	2,2	
Benzo[a]anthracen	FR	F5	DIN 38407-39 (F39): 2011-09	0,01	μg/l	0,20	
Chrysen	FR	F5	DIN 38407-39 (F39): 2011-09	0,01	μg/l	0,18	
Benzo[b]fluoranthen	FR	F5	DIN 38407-39 (F39): 2011-09	0,01	μg/l	0,28	
Benzo[k]fluoranthen	FR	F5	DIN 38407-39 (F39): 2011-09	0,01	μg/l	0,10	
Benzo[a]pyren	FR	F5	DIN 38407-39 (F39): 2011-09	0,008	μg/l	0,186	
Indeno[1,2,3-cd]pyren	FR	F5	DIN 38407-39 (F39): 2011-09	0,01	μg/l	0,07	
Fluoranthen	FR	F5	DIN 38407-39 (F39): 2011-09	0,02	μg/l	1,4	
Dibenzo[a,h]anthracen	FR	F5	DIN 38407-39 (F39): 2011-09	0,008	μg/l	0,020	
Benzo[ghi]perylen	FR	F5	DIN 38407-39 (F39): 2011-09	0,01	μg/l	0,09	
Summe 16 PAK nach EBV: 2021	FR		berechnet		μg/l	4,89	
Summe 15 PAK ohne Naphthalin nach EBV: 2021	FR		berechnet		μg/l	4,89	
1-Methylnaphthalin	FR	F5	DIN 38407-39 (F39): 2011-09	0,01	μg/l	n.n. ²⁾	
2-Methylnaphthalin	FR	F5	DIN 38407-39 (F39): 2011-09	0,01	μg/l	n.n. ²⁾	
Summe Methylnaphthaline nach EBV: 2021	FR		berechnet		μg/l	(n. b.) ³⁾	
Summe Methylnaphthaline + Naphthalin nach EBV: 2021	FR		berechnet		μg/l	(n. b.) ³⁾	

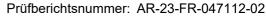
			JIIIWCIL			
				Probenbeze	Bod 1 (LAGA) + Bod 5 (EBV) 123143905	
				Probennum		ner
Parameter	Lab.	Akkr.	Methode	BG	Einheit	
PCB aus dem 2:1-Schüttel	eluat na	ch DII	N 19529: 2015-12			
PCB 28	FR	F5	DIN 38407-37: 2013-11	0,001	μg/l	n.n. ²⁾
PCB 52	FR	F5	DIN 38407-37: 2013-11	0,001	μg/l	n.n. ²⁾
PCB 101	FR	F5	DIN 38407-37: 2013-11	0,001	μg/l	n.n. ²⁾
PCB 153	FR	F5	DIN 38407-37: 2013-11	0,001	μg/l	n.n. ²⁾
PCB 138	FR	F5	DIN 38407-37: 2013-11	0,001	μg/l	n.n. ²⁾
PCB 180	FR	F5	DIN 38407-37: 2013-11	0,001	μg/l	n.n. ²⁾
Summe 6 PCB nach EBV: 2021	FR		berechnet		μg/l	(n. b.) ³⁾
PCB 118	FR	F5	DIN 38407-37: 2013-11	0,001	μg/l	n.n. ²⁾
Summe 7 PCB nach EBV: 2021	FR		berechnet		μg/l	(n. b.) ³⁾

Erläuterungen

BG - Bestimmungsgrenze

Lab. - Kürzel des durchführenden Labors

Akkr. - Akkreditierungskürzel des Prüflabors


Kommentare zu Ergebnissen

Die mit FR gekennzeichneten Parameter wurden von der Eurofins Umwelt Ost GmbH (Lindenstraße 11, Gewerbegebiet Freiberg Ost, Bobritzsch-Hilbersdorf) analysiert. Die Bestimmung der mit F5 gekennzeichneten Parameter ist nach DIN EN ISO/IEC 17025:2018 DAkkS D-PL-14081-01-00 akkreditiert.

Die Gleichwertigkeit zu DIN EN 13657: 2003-01 ist nachgewiesen. DIN EN ISO 54321:2021-04 wird als Referenzverfahren in der Methodensammlung FBU/LAGA Version 2.0 Stand 15.06.2021 ausdrücklich empfohlen. Zur Gleichwertigkeit von Aufschlussverfahren siehe für EBV: FAQ des LfU Bayern; für BBodSchV: §24.11.

²⁾ nicht nachweisbar

³⁾ nicht berechenbar

Seite 1 von 10

Eurofins Umwelt Ost GmbH - Lindenstraße 11 - Gewerbegebiet Freiberg Ost - D-09627 Bobritzsch-Hilbersdorf

Ingenieurbüro ECKERT GmbH Crusiusstraße 7 09120 Chemnitz

Dieser Prüfbericht ersetzt den Prüfbericht Nr. AR-23-FR-047112-01 vom 11.10.2023 aufgrund von Erweiterung des Prüfumfangs.

Titel: Prüfbericht zu Auftrag 12340240

Prüfberichtsnummer: AR-23-FR-047112-02

Auftragsbezeichnung: Reg.-Nr.: 08371-118, Proj.-Nr.: 16788/4013

Anzahl Proben: 1

Probenart: Boden

Probenehmer: keine Angabe, Probe(n) wurde(n) an das Labor ausgehändigt

Probeneingangsdatum: 13.09.2023

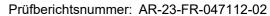
Prüfzeitraum: 13.09.2023 - 20.10.2023

Kommentar: Glauchau, Pestalozzistraße von Chemnitzer Platz bis Wettiner Straße

ENB AW-Kanal \ Grundhafter Straßenausbau

Nachuntersuchung DepV DK I-III.

Die Prüfergebnisse beziehen sich ausschließlich auf die untersuchten Prüfgegenstände. Sofern die Probenahme nicht durch unser Labor oder in unserem Auftrag erfolgte, wird hierfür keine Gewähr übernommen. Dieser Prüfbericht enthält eine qualifizierte elektronische Signatur und darf nur vollständig und unverändert weiterverbreitet werden. Auszüge oder Änderungen bedürfen in jedem Einzelfall der Genehmigung der EUROFINS UMWELT.


Es gelten die Allgemeinen Verkaufsbedingungen (AVB), sofern nicht andere Regelungen vereinbart sind. Die aktuellen AVB können Sie unter http://www.eurofins.de/umwelt/avb.aspx einsehen.

Das beauftragte Prüflaboratorium ist durch die DAkkS nach DIN EN ISO/IEC 17025:2018 DAkkS akkreditiert. Die Akkreditierung gilt nur für den in der Urkundenanlage (D-PL-14081-01-00) aufgeführten Umfang.

Anhänge:

XML_Export_AR-23-FR-047112-02.xml

Seite 2 von 10

Mario Thielemann Prüfleitung (Chemnitz)

+49 371 3343560

Digital signiert, 20.10.2023 Mario Thielemann Prüfleitung (Chemnitz)

				Probenbezeichnung		Bod 1 (LAGA) + Bod 5 (EBV)
				Probennumr	ner	123143905
Parameter	Lab.	Akkr.	Methode	BG	Einheit	
Probenvorbereitung Feststo	ffe					
Königswasseraufschluss (angewandte Methode)	FR	F5	L8:DIN EN 13657:2003-01;F5:DIN EN ISO 54321:2021-4			mittels thermoregu- lierbarem Graphitblock
Probenbegleitprotokoll	FR					siehe Anlage
Probenmenge inkl. Verpackung	FR	F5	DIN 19747: 2009-07		kg	10,4
Fremdstoffe (Art)	FR	F5	DIN 19747: 2009-07			nein
Fremdstoffe (Menge)	FR	F5	DIN 19747: 2009-07		g	0,0
Siebrückstand > 10mm	FR	F5	DIN 19747: 2009-07			ja
Fremdstoffe (Anteil)	FR	F5	DIN 19747: 2009-07	0,1	%	< 0,1
Rückstellprobe	FR		Hausmethode	100	g	2500
Physikalisch-chemische Ke	nngrö	ßen au	ıs der Originalsubs	tanz		
Trockenmasse	FR	F5	DIN EN 14346: 2007-03	0,1	Ma%	94,6
Aussehen (qualitativ)	FR	F5	DIN EN ISO 14688-1: 2018-05			Boden ohne Fremdbe- standteile
Farbe qualit.	FR	F5	DIN EN ISO 14688-1: 2018-05			gemischt
Geruch (qualitativ)	FR	F5	DIN EN ISO 14688-1: 2018-05			ohne
Elemente aus dem Königsw	asser	aufsch	luss			
Arsen (As)	FR	F5	DIN EN 16171:2017-01	0,8	mg/kg TS	23,6
Arsen (As)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,8	mg/kg TS	23,6
Blei (Pb)	FR	F5	DIN EN 16171:2017-01	2	mg/kg TS	11
Blei (Pb)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	2	mg/kg TS	11
Cadmium (Cd)	FR	F5	DIN EN 16171:2017-01	0,2	mg/kg TS	< 0,2
Cadmium (Cd)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,2	mg/kg TS	< 0,2
Chrom (Cr)	FR	F5	DIN EN 16171:2017-01	1	mg/kg TS	18
Chrom (Cr)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	1	mg/kg TS	18
Kupfer (Cu)	FR	F5	DIN EN 16171:2017-01	1	mg/kg TS	24
Kupfer (Cu)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	1	mg/kg TS	24
Nickel (Ni)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	1	mg/kg TS	14
Nickel (Ni)	FR	F5	DIN EN 16171:2017-01	1	mg/kg TS	14
Quecksilber (Hg)	FR	F5	DIN EN 16171:2017-01	0,07	mg/kg TS	0,10
Quecksilber (Hg)	FR	F5	DIN EN ISO 12846 (E12): 2012-08	0,07	mg/kg TS	< 0,07
Thallium (TI)	FR	F5	DIN EN 16171:2017-01	0,2	mg/kg TS	< 0,2
Zink (Zn)	FR	F5	DIN EN 16171:2017-01	1	mg/kg TS	31
Zink (Zn)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	1	mg/kg TS	31

				Probenbeze	Bod 1 (LAGA) + Bod 5 (EBV)	
				Probennum	mer	123143905
Parameter	Lab.	Akkr.	Methode	BG	Einheit	
Organische Summenparame	ter au	ıs der	Originalsubstanz			
Glühverlust (550 °C)	FR	F5	DIN EN 15169: 2007-05	0,1	Ma% TS	1,9
тос	FR	F5	DIN EN 15936: 2012-11 (AN,L8: Ver.A; FG,F5: Ver.B)	0,1	Ma% TS	0,2
EOX	FR	F5	DIN 38414-17 (S17): 2017-01	1,0	mg/kg TS	< 1,0
Extrahierbare lipophile Stoffe	FR	F5	LAGA KW/04: 2019-09	0,02	Ma% TS	0,31
Kohlenwasserstoffe C10-C22	FR	F5	DIN EN 14039: 2005-01/LAGA KW/04: 2019-09	40	mg/kg TS	< 40
Kohlenwasserstoffe C10-C40	FR	F5	DIN EN 14039: 2005-01/LAGA KW/04: 2019-09	40	mg/kg TS	< 40

				Probenbezei	Bod 1 (LAGA) + Bod 5 (EBV)	
				Probennum	ner	123143905
Parameter	Lab.	Akkr.	Methode	BG	Einheit	
PAK aus der Originalsubsta	anz					
Naphthalin	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Acenaphthylen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Acenaphthen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Fluoren	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Phenanthren	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Anthracen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Fluoranthen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Pyren	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Benzo[a]anthracen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Chrysen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Benzo[b]fluoranthen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05
Benzo[k]fluoranthen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05
Benzo[a]pyren	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05
Indeno[1,2,3-cd]pyren	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05
Dibenzo[a,h]anthracen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Benzo[ghi]perylen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05
Summe 16 EPA-PAK exkl. BG	FR	F5	DIN ISO 18287: 2006-05		mg/kg TS	(n. b.) ³⁾
Summe 15 PAK ohne Naphthalin exkl. BG	FR	F5	DIN ISO 18287: 2006-05		mg/kg TS	(n. b.) ³⁾
Naphthalin	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Acenaphthylen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Acenaphthen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Fluoren	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Phenanthren	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Anthracen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Fluoranthen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Pyren	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Benzo[a]anthracen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Chrysen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Benzo[b]fluoranthen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05
Benzo[k]fluoranthen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05
Benzo[a]pyren	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05
Indeno[1,2,3-cd]pyren	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05
Dibenzo[a,h]anthracen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Benzo[ghi]perylen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05
Summe 16 PAK nach EBV: 2021	FR		berechnet		mg/kg TS	0,125
Summe 15 PAK ohne Naphthalin nach EBV: 2021	FR		berechnet		mg/kg TS	0,125

			Probenbezeichnung		Bod 1 (LAGA) + Bod 5 (EBV)
			Probennumr	ner	123143905
Lab.	Akkr.	Methode	BG	Einheit	
nz					
FR	F5	DIN EN 17322: 2021-03	0,01	mg/kg TS	n.n. ²⁾
FR	F5	DIN EN 17322: 2021-03	0,01	mg/kg TS	n.n. ²⁾
FR	F5	DIN EN 17322: 2021-03	0,01	mg/kg TS	n.n. ²⁾
FR	F5	DIN EN 17322: 2021-03	0,01	mg/kg TS	n.n. ²⁾
FR	F5	DIN EN 17322: 2021-03	0,01	mg/kg TS	n.n. ²⁾
FR	F5	DIN EN 17322: 2021-03	0,01	mg/kg TS	< 0,01
FR		berechnet		mg/kg TS	0,005
FR	F5	DIN EN 17322: 2021-03	0,01	mg/kg TS	n.n. ²⁾
FR		berechnet		mg/kg TS	0,005
., nich	t-flüch	t. Par. nach DIN 19	529: 2015-12		
FR	F5		10	FNU	36
us den	⊔ n 10:1-	Schütteleluat nach	DIN EN 1245	7-4: 2003-01	
FR	F5	DIN EN ISO 10523 (C5): 2012-04			9,7
FR	F5	DIN 38404-4 (C4): 1976-12		°C	20,9
FR	F5	DIN EN 27888 (C8): 1993-11	5	μS/cm	124
FR	F5	DIN EN 15216: 2008-01	0,15	Ma%	< 0,15
FR	F5	DIN EN 15216: 2008-01	150	mg/l	< 150
ößen a	aus de	m 2:1-Schüttelelua	nach DIN 19	529: 2015-12	
FR	F5	DIN EN ISO 10523 (C5): 2012-04			8,8
FR	F5	1976-12		°C	20,9
FR	F5	DIN EN 27888 (C8): 1993-11	5	μS/cm	459
ittelelı	uat nac		2003-01		
FR	F5	DIN EN ISO 10304-1 (D20): 2009-07	2,0	mg/l	< 2,0
FR	F5	DIN EN ISO 10304-1 (D20): 2009-07	1,0	mg/l	5,9
FR	F5	DIN EN ISO 10304-1 (D20): 2009-07	1,0	mg/l	13
FR	F5	DIN EN ISO 14403-2: 2012-10	0,005	mg/l	< 0,005
telelu	at nach	DIN 19529: 2015-1	2		
	FR F	FR F5	FR F5 DIN EN 17322: 2021-03 FR DEFECTION OF THE PROPERTY O	Probennum	Lab. Akkr. Methode BG Einheit

				Probenbezeichnung		Bod 1 (LAGA) + Bod 5 (EBV)
_	- I	1	I	Probennumr	1	123143905
Parameter	Lab.		Methode	BG	Einheit	
Elemente aus dem 10:1-So	chüttele	luat na		: 2003-01	ı	
Antimon (Sb)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	0,005
Arsen (As)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	0,062
Barium (Ba)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	0,002
Blei (Pb)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	< 0,001
Cadmium (Cd)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,0003	mg/l	< 0,0003
Chrom (Cr)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	0,001
Kupfer (Cu)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,005	mg/l	< 0,005
Molybdän (Mo)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	0,005
Nickel (Ni)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	< 0,001
Quecksilber (Hg)	FR	F5	DIN EN ISO 12846 (E12): 2012-08	0,0002	mg/l	< 0,0002
Selen (Se)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	0,001
Zink (Zn)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,01	mg/l	< 0,01
Elemente aus dem 2:1-Sch	nüttelelı	ıat nac	th DIN 19529: 2015-	12		
Arsen (As)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	0,069
Blei (Pb)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	0,018
Cadmium (Cd)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,0003	mg/l	< 0,0003
Chrom (Cr)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	0,011
Kupfer (Cu)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	0,019
Nickel (Ni)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	0,008
Quecksilber (Hg)	FR	F5	DIN EN ISO 12846 (E12): 2012-08	0,0001	mg/l	< 0,0001
Thallium (TI)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,0002	mg/l	< 0,0002
Zink (Zn)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,01	mg/l	0,08
Org. Summenparameter a	us dem	10:1-S	chütteleluat nach D	DIN EN 12457	-4: 2003-01	
Gelöster org. Kohlenstoff (DOC)	FR	F5	DIN EN 1484 (H3): 2019-04	1,0	mg/l	2,0
Phenolindex, wasserdampfflüchtig	FR	F5	DIN EN ISO 14402 (H37): 1999-12	0,01	mg/l	< 0,01

				Probenbezei	chnung	Bod 1 (LAGA) + Bod 5 (EBV)
				Probennumr	ner	123143905
Parameter	Lab.	Akkr.	Methode	BG	Einheit	
PAK aus dem 2:1-Schüttele	luat na	ch DII	N 19529: 2015-12			
Naphthalin	FR	F5	DIN 38407-39 (F39): 2011-09	0,05	μg/l	n.n. ²⁾
Acenaphthylen	FR	F5	DIN 38407-39 (F39): 2011-09	0,03	μg/l	n.n. ²⁾
Acenaphthen	FR	F5	DIN 38407-39 (F39): 2011-09	0,02	μg/l	0,06
Fluoren	FR	F5	DIN 38407-39 (F39): 2011-09	0,01	μg/l	< 0,01
Phenanthren	FR	F5	DIN 38407-39 (F39): 2011-09	0,02	μg/l	0,04
Anthracen	FR	F5	DIN 38407-39 (F39): 2011-09	0,008	μg/l	0,035
Pyren	FR	F5	DIN 38407-39 (F39): 2011-09	0,01	μg/l	2,2
Benzo[a]anthracen	FR	F5	DIN 38407-39 (F39): 2011-09	0,01	μg/l	0,20
Chrysen	FR	F5	DIN 38407-39 (F39): 2011-09	0,01	μg/l	0,18
Benzo[b]fluoranthen	FR	F5	DIN 38407-39 (F39): 2011-09	0,01	μg/l	0,28
Benzo[k]fluoranthen	FR	F5	DIN 38407-39 (F39): 2011-09	0,01	μg/l	0,10
Benzo[a]pyren	FR	F5	DIN 38407-39 (F39): 2011-09	0,008	μg/l	0,186
Indeno[1,2,3-cd]pyren	FR	F5	DIN 38407-39 (F39): 2011-09	0,01	μg/l	0,07
Fluoranthen	FR	F5	DIN 38407-39 (F39): 2011-09	0,02	μg/l	1,4
Dibenzo[a,h]anthracen	FR	F5	DIN 38407-39 (F39): 2011-09	0,008	μg/l	0,020
Benzo[ghi]perylen	FR	F5	DIN 38407-39 (F39): 2011-09	0,01	μg/l	0,09
Summe 16 PAK nach EBV: 2021	FR		berechnet		μg/l	4,89
Summe 15 PAK ohne Naphthalin nach EBV: 2021	FR		berechnet		μg/l	4,89
1-Methylnaphthalin	FR	F5	DIN 38407-39 (F39): 2011-09	0,01	μg/l	n.n. ²⁾
2-Methylnaphthalin	FR	F5	DIN 38407-39 (F39): 2011-09	0,01	μg/l	n.n. ²⁾
Summe Methylnaphthaline nach EBV: 2021	FR		berechnet		μg/l	(n. b.) ³⁾
Summe Methylnaphthaline + Naphthalin nach EBV: 2021	FR		berechnet		μg/l	(n. b.) ³⁾
PCB aus dem 2:1-Schüttele	luat na	ch Di	N 19529: 2015-12			
PCB 28	FR	F5	DIN 38407-37: 2013-11	0,001	μg/l	n.n. ²⁾
PCB 52	FR	F5	DIN 38407-37: 2013-11	0,001	μg/l	n.n. ²⁾
PCB 101	FR	F5	DIN 38407-37: 2013-11	0,001	μg/l	n.n. ²⁾
PCB 153	FR	F5	DIN 38407-37: 2013-11	0,001	μg/l	n.n. ²⁾
PCB 138	FR	F5	DIN 38407-37: 2013-11	0,001	μg/l	n.n. ²⁾
PCB 180	FR	F5	DIN 38407-37: 2013-11	0,001	μg/l	n.n. ²⁾
Summe 6 PCB nach EBV: 2021	FR		berechnet		μg/l	(n. b.) ³⁾
PCB 118	FR	F5	DIN 38407-37: 2013-11	0,001	μg/l	n.n. ²⁾
Summe 7 PCB nach EBV: 2021	FR		berechnet		μg/l	(n. b.) ³⁾

Prüfberichtsnummer: AR-23-FR-047112-02

Seite 9 von 10

Erläuterungen

BG - Bestimmungsgrenze

Lab. - Kürzel des durchführenden Labors

Akkr. - Akkreditierungskürzel des Prüflabors

Kommentare zu Ergebnissen

- ¹⁾ Die Gleichwertigkeit zu DIN EN 13657: 2003-01 ist nachgewiesen. DIN EN ISO 54321:2021-04 wird als Referenzverfahren in der Methodensammlung FBU/LAGA Version 2.0 Stand 15.06.2021 ausdrücklich empfohlen. Zur Gleichwertigkeit von Aufschlussverfahren siehe für EBV: FAQ des LfU Bayern; für BBodSchV: §24.11.
- ²⁾ nicht nachweisbar
- 3) nicht berechenbar

Die mit FR gekennzeichneten Parameter wurden von der Eurofins Umwelt Ost GmbH (Lindenstraße 11, Gewerbegebiet Freiberg Ost, Bobritzsch-Hilbersdorf) analysiert. Die Bestimmung der mit F5 gekennzeichneten Parameter ist nach DIN EN ISO/IEC 17025:2018 DAkkS D-PL-14081-01-00 akkreditiert.

Probenbegleitprotokoll nach DIN 19747 - Juli 2009 - Anhang A

Probennummer 123143905

Probenbeschreibung Bod 1 (LAGA) + Bod 5 (EBV)

Probenvorbereitung

Probenehmer keine Angabe,

Probe(n) wurde(n) an

das Labor ausgehändigt

Probenahmeprotokoll (von der Feldprobe zur Laborprobe) liegt vor:

Nein

Fremdstoffe (Menge): 0,0 g
Fremdstoffe (Anteil): < 0,1 %
Fremdstoffe (Art): nein
Siebrückstand > 10mm: ja

Siebrückstand wird auf < 10mm zerkleinert und dem Siebdurchgang beigemischt.

Probenteilung / Homogenisierung durch: Fraktionierendes Teilen

Rückstellprobe: 2500 g

Probenaufarbeitung (von der Prüfprobe zur Messprobe) ****)

Nr.	DK0	DKI, II, III	REK	Parameter	Zerkleinern **)	Trocknen	Feinzerkleinern ***)	Probenmenge
0	Х	Х	Х	Trockenmasse	< 5 mm	Nein	Nein	15 g
1.01	Х	Х		Glühverlust	< 5 mm	40 °C	< 150 µm	10 g
1.02	Х	Х		TOC	< 5 mm	40 °C	< 150 µm	2 g
2.01	Х			BTEX	Originalprobe (Stichprobe)	Nein	Nein	20 g + 20 ml Methanol
2.02 + 2.04	Х		Х	PAK/PCB	< 5 mm	Nein	Nein	12,5 g
2.03	Х			MKW (C10 - C40)	< 5 mm	Nein	Nein	20 g
2.07	Х	Х		Lipophile Stoffe	< 5 mm	Verreiben mit Natriumsulfat	Nein	20 g
2.08 - 2.14			X	Metalle, Königswasser- aufschluss	< 5 mm	40 °C	< 150 μm	3 g
3.01 - 3.21	Х	Х	Х	Eluat	Nein/ < 10 mm	Nein	Nein	100 g
1.01/1.02 *)	Х	Х		C-elementar	< 5 mm	40 °C	< 150 µm	2 g
1.01/1.02 *)	Х	Х		AT4	< 10 mm	Nein	Nein	300 g
1.01/1.02 *)	Х	Х		GB21	< 10 mm	Nein	Nein	200 g
1.01/1.02 *)	X	Х		Brennwert	< 5 mm	105 °C	< 150 µm	5 g

Die Ergebnisse beziehen sich auf das sortenreine Prüfprobenmaterial nach Entfernung der Fremdmaterialien gemäß DIN 19747:2009-07.

*) Zusatzparameter bei Überschreitung der genannten Grenzwerte

**) Zerkleinern mittels Backenbrecher mit Wolframkarbid-Backen

***) Feinzerkleinerung mittels Laborbackenbrecher BB51 mit Wolframkarbid-Backen

****) Maximalumfang; gilt nur für die beauftragten Parameter

Seite 1 von 7

Eurofins Umwelt Ost GmbH - Lindenstraße 11 - Gewerbegebiet Freiberg Ost - D-09627 Bobritzsch-Hilbersdorf

Ingenieurbüro ECKERT GmbH Crusiusstraße 7 09120 Chemnitz

Titel: Prüfbericht zu Auftrag 12340227

Prüfberichtsnummer: AR-23-FR-045805-01

Auftragsbezeichnung: Reg.-Nr.: 08371-118, Proj.-Nr.: 16788/4013

Anzahl Proben: 1

Probenart: Boden

Probenehmer: keine Angabe, Probe(n) wurde(n) an das Labor ausgehändigt

Probeneingangsdatum: 13.09.2023

Prüfzeitraum: 13.09.2023 - 04.10.2023

Kommentar: Die Nachuntersuchung nach DepV DK I-III wird veranlasst.

Die Prüfergebnisse beziehen sich ausschließlich auf die untersuchten Prüfgegenstände. Sofern die Probenahme nicht durch unser Labor oder in unserem Auftrag erfolgte, wird hierfür keine Gewähr übernommen. Dieser Prüfbericht enthält eine qualifizierte elektronische Signatur und darf nur vollständig und unverändert weiterverbreitet werden. Auszüge oder Änderungen bedürfen in jedem Einzelfall der Genehmigung der EUROFINS UMWELT.

Es gelten die Allgemeinen Verkaufsbedingungen (AVB), sofern nicht andere Regelungen vereinbart sind. Die aktuellen AVB können Sie unter http://www.eurofins.de/umwelt/avb.aspx einsehen.

Das beauftragte Prüflaboratorium ist durch die DAkkS nach DIN EN ISO/IEC 17025:2018 DAkkS akkreditiert. Die Akkreditierung gilt nur für den in der Urkundenanlage (D-PL-14081-01-00) aufgeführten Umfang.

Anhänge:

XML_Export_AR-23-FR-045805-01.xml

Mario Thielemann Prüfleitung (Chemnitz)

+49 371 3343560

Digital signiert, 04.10.2023 Mario Thielemann Prüfleitung (Chemnitz)

D-07749 Jena

				Probenbezeichnung		Bod 2 (LAGA) + Bod 6 (EBV)
				Probennum	123144182	
Parameter	Lab.	Akkr.	Methode	BG	Einheit	
Probenvorbereitung Fests	toffe			1		
Königswasseraufschluss (angewandte Methode)	FR	F5	L8:DIN EN 13657:2003-01;F5:DIN EN ISO 54321:2021-4			mittels thermoregu- lierbarem Graphitblock
Probenmenge inkl. Verpackung	FR	F5	DIN 19747: 2009-07		kg	7,35
Fremdstoffe (Art)	FR	F5	DIN 19747: 2009-07			nein
Fremdstoffe (Menge)	FR	F5	DIN 19747: 2009-07		g	0,0
Siebrückstand > 10mm	FR	F5	DIN 19747: 2009-07			ja
Fremdstoffe (Anteil)	FR	F5	DIN 19747: 2009-07	0,1	%	< 0,1
Physikalisch-chemische K	enngrö	ßen au	ıs der Originalsubs	tanz		
Trockenmasse	FR	F5	DIN EN 14346: 2007-03	0,1	Ma%	90,8
Aussehen (qualitativ)	FR	F5	DIN EN ISO 14688-1: 2018-05			Boden ohne Fremdbe- standteile
Farbe qualit.	FR	F5	DIN EN ISO 14688-1: 2018-05			mehrfarbig
Geruch (qualitativ)	FR	F5	DIN EN ISO 14688-1: 2018-05			leicht erdig
Elemente aus dem Königs	wasser	aufsch	luss			
Arsen (As)	FR	F5	DIN EN 16171:2017-01	0,8	mg/kg TS	30,3
Arsen (As)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,8	mg/kg TS	30,3
Blei (Pb)	FR	F5	DIN EN 16171:2017-01	2	mg/kg TS	67
Blei (Pb)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	2	mg/kg TS	67
Cadmium (Cd)	FR	F5	DIN EN 16171:2017-01	0,2	mg/kg TS	1,8
Cadmium (Cd)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,2	mg/kg TS	1,8
Chrom (Cr)	FR	F5	DIN EN 16171:2017-01	1	mg/kg TS	20
Chrom (Cr)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	1	mg/kg TS	20
Kupfer (Cu)	FR	F5	DIN EN 16171:2017-01	1	mg/kg TS	30
Kupfer (Cu)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	1	mg/kg TS	30
Nickel (Ni)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	1	mg/kg TS	24
Nickel (Ni)	FR	F5	DIN EN 16171:2017-01	1	mg/kg TS	24
Quecksilber (Hg)	FR	F5	DIN EN 16171:2017-01	0,07	mg/kg TS	0,32
Quecksilber (Hg)	FR	F5	DIN EN ISO 12846 (E12): 2012-08	0,07	mg/kg TS	0,26
Thallium (TI)	FR	F5	DIN EN 16171:2017-01	0,2	mg/kg TS	< 0,2
Zink (Zn)	FR	F5	DIN EN 16171:2017-01	1	mg/kg TS	337
Zink (Zn)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	1	mg/kg TS	337
					-	

				Probenbeze	Bod 2 (LAGA) + Bod 6 (EBV)	
				Probennum	nmer	123144182
Parameter	Lab.	Akkr.	Methode	BG	Einheit	
Organische Summenparame	eter au	ıs der	Originalsubstanz			
тос	FR	F5	DIN EN 15936: 2012-11 (AN,L8: Ver.A; FG,F5: Ver.B)	0,1	Ma% TS	1,9
EOX	FR	F5	DIN 38414-17 (S17): 2017-01	1,0	mg/kg TS	< 1,0
Kohlenwasserstoffe C10-C22	FR	F5	DIN EN 14039: 2005-01/LAGA KW/04: 2019-09	40	mg/kg TS	< 40
Kohlenwasserstoffe C10-C40	FR	F5	DIN EN 14039: 2005-01/LAGA KW/04: 2019-09	40	mg/kg TS	45

				Probenbeze	ichnung	Bod 2 (LAGA) + Bod 6 (EBV)
				Probennumi	mer	123144182
Parameter	Lab.	Akkr.	Methode	BG	Einheit	
PAK aus der Originalsubsta	anz					
Naphthalin	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	1,7
Acenaphthylen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,25
Acenaphthen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	19
Fluoren	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	23
Phenanthren	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	87
Anthracen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	35
Fluoranthen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	110
Pyren	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	72
Benzo[a]anthracen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	41
Chrysen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	31
Benzo[b]fluoranthen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	32
Benzo[k]fluoranthen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	13
Benzo[a]pyren	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	26
Indeno[1,2,3-cd]pyren	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	14
Dibenzo[a,h]anthracen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	3,9
Benzo[ghi]perylen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	13
Summe 16 EPA-PAK exkl. BG	FR	F5	DIN ISO 18287: 2006-05		mg/kg TS	522
Summe 15 PAK ohne Naphthalin exkl. BG	FR	F5	DIN ISO 18287: 2006-05		mg/kg TS	520
Naphthalin	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	1,7
Acenaphthylen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,25
Acenaphthen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	19
Fluoren	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	23
Phenanthren	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	87
Anthracen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	35
Fluoranthen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	110
Pyren	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	72
Benzo[a]anthracen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	41
Chrysen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	31
Benzo[b]fluoranthen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	32
Benzo[k]fluoranthen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	13
Benzo[a]pyren	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	26
Indeno[1,2,3-cd]pyren	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	14
Dibenzo[a,h]anthracen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	3,9
Benzo[ghi]perylen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	13
Summe 16 PAK nach EBV: 2021	FR		berechnet		mg/kg TS	522
Summe 15 PAK ohne Naphthalin nach EBV: 2021	FR		berechnet		mg/kg TS	520

				Probenbezeichnung		Bod 2 (LAGA) + Bod 6 (EBV)
				Probennumn		123144182
Parameter	Lab.	Akkr.	Methode	BG	Einheit	
PCB aus der Originalsubsta		1	I		"	2)
PCB 28	FR	F5	DIN EN 17322: 2021-03	0,01	mg/kg TS	n.n. ²⁾
PCB 52	FR	F5	DIN EN 17322: 2021-03	0,01	mg/kg TS	n.n. ²⁾
PCB 101	FR 	F5	DIN EN 17322: 2021-03	0,01	mg/kg TS	n.n. ²⁾
PCB 153	FR	F5	DIN EN 17322: 2021-03	0,01	mg/kg TS	n.n. ²⁾
PCB 138	FR	F5	DIN EN 17322: 2021-03	0,01	mg/kg TS	n.n. ²⁾
PCB 180	FR	F5	DIN EN 17322: 2021-03	0,01	mg/kg TS	< 0,01
Summe 6 PCB nach EBV: 2021	FR		berechnet		mg/kg TS	0,005
PCB 118	FR	F5	DIN EN 17322: 2021-03	0,01	mg/kg TS	n.n. ²⁾
Summe 7 PCB nach EBV: 2021	FR		berechnet		mg/kg TS	0,005
Kenngr. d. Eluatherst. f. org	., nich	t-flüch	t. Par. nach DIN 19	529: 2015-12		
Trübung im Eluat nach DIN EN ISO 7027: 2000-04	FR	F5		10	FNU	20
Physchem. Kenngrößen au	ıs den	າ 10:1-	Schütteleluat nach	DIN EN 1245	7-4: 2003-01	
pH-Wert	FR	F5	DIN EN ISO 10523 (C5): 2012-04			9,0
Temperatur pH-Wert	FR	F5	DIN 38404-4 (C4): 1976-12		°C	20,7
Leitfähigkeit bei 25°C	FR	F5	DIN EN 27888 (C8): 1993-11	5	μS/cm	209
Physikalisch-chem. Kenngro	ößen a	us de	m 2:1-Schütteleluat	nach DIN 19	529: 2015-12	
pH-Wert	FR	F5	DIN EN ISO 10523 (C5): 2012-04			8,4
Temperatur pH-Wert	FR	F5	DIN 38404-4 (C4): 1976-12		°C	19,2
Leitfähigkeit bei 25°C	FR	F5	DIN EN 27888 (C8): 1993-11	5	μS/cm	845
Anionen aus dem 10:1-Schü	ttelelu	iat nac	th DIN EN 12457-4:	2003-01		
Chlorid (CI)	FR	F5	DIN EN ISO 10304-1 (D20): 2009-07	1,0	mg/l	21
Sulfat (SO4)	FR	F5	DIN EN ISO 10304-1 (D20): 2009-07	1,0	mg/l	12
Anionen aus dem 2:1-Schüt	telelua	at nach	n DIN 19529: 2015-1	2		
Sulfat (SO4)	FR	F5	DIN EN ISO 10304-1 (D20): 2009-07	1,0	mg/l	80
Elemente aus dem 10:1-Sch	üttelel	uat na		2003-01		
Arsen (As)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	0,018
Blei (Pb)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	< 0,001
Cadmium (Cd)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,0003	mg/l	< 0,0003
Chrom (Cr)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	< 0,001
Kupfer (Cu)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,005	mg/l	< 0,005
Nickel (Ni)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	< 0,001
Quecksilber (Hg)	FR	F5	DIN EN ISO 12846 (E12): 2012-08	0,0002	mg/l	< 0,0002
Zink (Zn)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,01	mg/l	< 0,01

				Probenbezeichnung		Bod 2 (LAGA) + Bod 6 (EBV)	
				Probennumn	ner	123144182	
Parameter	Lab.		Methode	BG	Einheit		
Elemente aus dem 2:1-Schü	ittelelu	ıat nac		12			
Arsen (As)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	0,004	
Blei (Pb)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	< 0,001	
Cadmium (Cd)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,0003	mg/l	< 0,0003	
Chrom (Cr)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	< 0,001	
Kupfer (Cu)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	0,001	
Nickel (Ni)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	< 0,001	
Quecksilber (Hg)	FR	F5	DIN EN ISO 12846 (E12): 2012-08	0,0001	mg/l	< 0,0001	
Thallium (TI)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,0002	mg/l	< 0,0002	
Zink (Zn)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,01	mg/l	< 0,01	
PAK aus dem 2:1-Schüttele	luat na	ch DI	N 19529: 2015-12				
Naphthalin	FR	F5	DIN 38407-39 (F39): 2011-09	0,05	μg/l	n.n. ²⁾	
Acenaphthylen	FR	F5	DIN 38407-39 (F39): 2011-09	0,03	μg/l	n.n. ²⁾	
Acenaphthen	FR	F5	DIN 38407-39 (F39): 2011-09	0,02	μg/l	0,15	
Fluoren	FR	F5	DIN 38407-39 (F39): 2011-09	0,01	μg/l	0,03	
Phenanthren	FR	F5	DIN 38407-39 (F39): 2011-09	0,02	μg/l	0,14	
Anthracen	FR	F5	DIN 38407-39 (F39): 2011-09	0,008	μg/l	0,892	
Pyren	FR	F5	DIN 38407-39 (F39): 2011-09	0,01	μg/l	0,22	
Benzo[a]anthracen	FR	F5	DIN 38407-39 (F39): 2011-09	0,01	μg/l	0,09	
Chrysen	FR	F5	DIN 38407-39 (F39): 2011-09	0,01	μg/l	0,28	
Benzo[b]fluoranthen	FR	F5	DIN 38407-39 (F39): 2011-09	0,01	μg/l	0,09	
Benzo[k]fluoranthen	FR	F5	DIN 38407-39 (F39): 2011-09	0,01	μg/l	0,04	
Benzo[a]pyren	FR	F5	DIN 38407-39 (F39): 2011-09	0,008	μg/l	0,064	
Indeno[1,2,3-cd]pyren	FR	F5	DIN 38407-39 (F39): 2011-09	0,01	μg/l	0,03	
Fluoranthen	FR	F5	DIN 38407-39 (F39): 2011-09	0,02	μg/l	0,27	
Dibenzo[a,h]anthracen	FR	F5	DIN 38407-39 (F39): 2011-09	0,008	μg/l	0,009	
Benzo[ghi]perylen	FR	F5	DIN 38407-39 (F39): 2011-09	0,01	μg/l	0,04	
Summe 16 PAK nach EBV: 2021	FR		berechnet		μg/l	2,34	
Summe 15 PAK ohne Naphthalin nach EBV: 2021	FR		berechnet		μg/l	2,34	
1-Methylnaphthalin	FR	F5	DIN 38407-39 (F39): 2011-09	0,01	μg/l	< 0,01	
2-Methylnaphthalin	FR	F5	DIN 38407-39 (F39): 2011-09	0,01	μg/l	< 0,01	
Summe Methylnaphthaline nach EBV: 2021	FR		berechnet		μg/l	0,010	
Summe Methylnaphthaline + Naphthalin nach EBV: 2021	FR		berechnet		μg/l	0,010	

			JIIIWCIL			
				Probenbeze	ichnung	Bod 2 (LAGA) + Bod 6 (EBV)
				Probennum	ner	123144182
Parameter	Lab.	Akkr.	Methode	BG	Einheit	
PCB aus dem 2:1-Schüttel	eluat na	ch DII	N 19529: 2015-12			
PCB 28	FR	F5	DIN 38407-37: 2013-11	0,001	µg/l	n.n. ²⁾
PCB 52	FR	F5	DIN 38407-37: 2013-11	0,001	μg/l	n.n. ²⁾
PCB 101	FR	F5	DIN 38407-37: 2013-11	0,001	μg/l	n.n. ²⁾
PCB 153	FR	F5	DIN 38407-37: 2013-11	0,001	µg/l	n.n. ²⁾
PCB 138	FR	F5	DIN 38407-37: 2013-11	0,001	μg/l	n.n. ²⁾
PCB 180	FR	F5	DIN 38407-37: 2013-11	0,001	µg/l	n.n. ²⁾
Summe 6 PCB nach EBV: 2021	FR		berechnet		μg/l	(n. b.) ³⁾
PCB 118	FR	F5	DIN 38407-37: 2013-11	0,001	μg/l	n.n. ²⁾
Summe 7 PCB nach EBV: 2021	FR		berechnet		μg/l	(n. b.) ³⁾

Erläuterungen

BG - Bestimmungsgrenze

Lab. - Kürzel des durchführenden Labors

Akkr. - Akkreditierungskürzel des Prüflabors

Kommentare zu Ergebnissen

Die mit FR gekennzeichneten Parameter wurden von der Eurofins Umwelt Ost GmbH (Lindenstraße 11, Gewerbegebiet Freiberg Ost, Bobritzsch-Hilbersdorf) analysiert. Die Bestimmung der mit F5 gekennzeichneten Parameter ist nach DIN EN ISO/IEC 17025:2018 DAkkS D-PL-14081-01-00 akkreditiert.

Die Gleichwertigkeit zu DIN EN 13657: 2003-01 ist nachgewiesen. DIN EN ISO 54321:2021-04 wird als Referenzverfahren in der Methodensammlung FBU/LAGA Version 2.0 Stand 15.06.2021 ausdrücklich empfohlen. Zur Gleichwertigkeit von Aufschlussverfahren siehe für EBV: FAQ des LfU Bayern; für BBodSchV: §24.11.

²⁾ nicht nachweisbar

³⁾ nicht berechenbar

Eurofins Umwelt Ost GmbH - Lindenstraße 11 - Gewerbegebiet Freiberg Ost -D-09627 Bobritzsch-Hilbersdorf

Ingenieurbüro ECKERT GmbH Crusiusstraße 7 09120 Chemnitz

Dieser Prüfbericht ersetzt den Prüfbericht Nr. AR-23-FR-045805-01 vom 04.10.2023 aufgrund von Erweiterung des Prüfumfangs.

Titel: Prüfbericht zu Auftrag 12340227

Prüfberichtsnummer: AR-23-FR-045805-02

Auftragsbezeichnung: Reg.-Nr.: 08371-118, Proj.-Nr.: 16788/4013

Anzahl Proben: 1

Boden Probenart:

Probenehmer: keine Angabe, Probe(n) wurde(n) an das Labor ausgehändigt

Probeneingangsdatum: 13.09.2023

Prüfzeitraum: 13.09.2023 - 23.10.2023

Kommentar: Nachuntersuchung nach DepV DK I-III.

Die Prüfergebnisse beziehen sich ausschließlich auf die untersuchten Prüfgegenstände. Sofern die Probenahme nicht durch unser Labor oder in unserem Auftrag erfolgte, wird hierfür keine Gewähr übernommen. Dieser Prüfbericht enthält eine qualifizierte elektronische Signatur und darf nur vollständig und unverändert weiterverbreitet werden. Auszüge oder Änderungen bedürfen in jedem Einzelfall der Genehmigung der EUROFINS UMWELT.

Es gelten die Allgemeinen Verkaufsbedingungen (AVB), sofern nicht andere Regelungen vereinbart sind. Die aktuellen AVB können Sie unter http://www.eurofins.de/umwelt/avb.aspx einsehen.

Das beauftragte Prüflaboratorium ist durch die DAkkS nach DIN EN ISO/IEC 17025:2018 DAkkS akkreditiert. Die Akkreditierung gilt nur für den in der Urkundenanlage (D-PL-14081-01-00) aufgeführten Umfang.

Anhänge:

XML_Export_AR-23-FR-045805-02.xml

Mario Thielemann Prüfleitung (Chemnitz)

+49 371 3343560

Digital signiert, 24.10.2023 Sophie Maixner Prüfleitung

+49 3641 4649 0 +493641464919

Amtsgericht Jena HRB 202596 USt.-ID.Nr. DE 151 28 1997

GF: Axel Ulbricht, Matthias Prauser

Bankverbindung: UniCredit Bank AG BLZ 207 300 17 Kto 7000000550 IBAN DE07 2073 0017 7000 0005 50 **BIC/SWIFT HYVEDEMME17**

Deutsche

Akkreditierungsstelle

D-PL-14081-01-00

D-07749 Jena

				Probenbezei	Bod 2 (LAGA) + Bod 6 (EBV)	
				Probennumr	ner	123144182
Parameter	Lab.	Akkr.	Methode	BG	Einheit	
Probenvorbereitung Fests	stoffe					
Königswasseraufschluss (angewandte Methode)	FR	F5	L8:DIN EN 13657:2003-01;F5:DIN EN ISO 54321:2021-4			mittels thermoregu- lierbarem Graphitblock
Probenbegleitprotokoll	FR					siehe Anlage
Probenmenge inkl. Verpackung	FR	F5	DIN 19747: 2009-07		kg	5,43
Fremdstoffe (Art)	FR	F5	DIN 19747: 2009-07			nein
Fremdstoffe (Menge)	FR	F5	DIN 19747: 2009-07		g	0,0
Siebrückstand > 10mm	FR	F5	DIN 19747: 2009-07			ja
Fremdstoffe (Anteil)	FR	F5	DIN 19747: 2009-07	0,1	%	< 0,1
Rückstellprobe	FR		Hausmethode	100	g	3510
Physikalisch-chemische k	Kenngrö	ßen au	ıs der Originalsubs	tanz		
Trockenmasse	FR	F5	DIN EN 14346: 2007-03	0,1	Ma%	90,8
Aussehen (qualitativ)	FR	F5	DIN EN ISO 14688-1: 2018-05			Boden ohne Fremdbe- standteile
Farbe qualit.	FR	F5	DIN EN ISO 14688-1: 2018-05			mehrfarbig
Geruch (qualitativ)	FR	F5	DIN EN ISO 14688-1: 2018-05			leicht erdig
Elemente aus dem Königs	swasser	aufsch	luss			
Arsen (As)	FR	F5	DIN EN 16171:2017-01	0,8	mg/kg TS	30,3
Arsen (As)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,8	mg/kg TS	30,3
Blei (Pb)	FR	F5	DIN EN 16171:2017-01	2	mg/kg TS	67
Blei (Pb)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	2	mg/kg TS	67
Cadmium (Cd)	FR	F5	DIN EN 16171:2017-01	0,2	mg/kg TS	1,8
Cadmium (Cd)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,2	mg/kg TS	1,8
Chrom (Cr)	FR	F5	DIN EN 16171:2017-01	1	mg/kg TS	20
Chrom (Cr)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	1	mg/kg TS	20
Kupfer (Cu)	FR	F5	DIN EN 16171:2017-01	1	mg/kg TS	30
Kupfer (Cu)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	1	mg/kg TS	30
Nickel (Ni)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	1	mg/kg TS	24
Nickel (Ni)	FR	F5	DIN EN 16171:2017-01	1	mg/kg TS	24
Quecksilber (Hg)	FR	F5	DIN EN 16171:2017-01	0,07	mg/kg TS	0,32
Quecksilber (Hg)	FR	F5	DIN EN ISO 12846 (E12): 2012-08	0,07	mg/kg TS	0,26
Thallium (TI)	FR	F5	DIN EN 16171:2017-01	0,2	mg/kg TS	< 0,2
Zink (Zn)	FR	F5	DIN EN 16171:2017-01	1	mg/kg TS	337
Zink (Zn)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	1	mg/kg TS	337

				Probenbezeichnung		Bod 2 (LAGA) + Bod 6 (EBV)			
				Probennum	ner	123144182			
Parameter	Lab.	Akkr.	Methode	BG	Einheit				
Organische Summenparameter aus der Originalsubstanz									
Glühverlust (550 °C)	FR	F5	DIN EN 15169: 2007-05	0,1	Ma% TS	3,3			
тос	FR	F5	DIN EN 15936: 2012-11 (AN,L8: Ver.A; FG,F5: Ver.B)	0,1	Ma% TS	1,9			
EOX	FR	F5	DIN 38414-17 (S17): 2017-01	1,0	mg/kg TS	< 1,0			
Extrahierbare lipophile Stoffe	FR	F5	LAGA KW/04: 2019-09	0,02	Ma% TS	0,13			
Kohlenwasserstoffe C10-C22	FR	F5	DIN EN 14039: 2005-01/LAGA KW/04: 2019-09	40	mg/kg TS	< 40			
Kohlenwasserstoffe C10-C40	FR	F5	DIN EN 14039: 2005-01/LAGA KW/04: 2019-09	40	mg/kg TS	45			

	P		Probenbezei	Bod 2 (LAGA) + Bod 6 (EBV)		
				Probennum	ner	123144182
Parameter	Lab.	Akkr.	Methode	BG	Einheit	
PAK aus der Originalsubsta	anz	•				
Naphthalin	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	1,7
Acenaphthylen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,25
Acenaphthen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	19
Fluoren	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	23
Phenanthren	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	87
Anthracen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	35
Fluoranthen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	110
Pyren	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	72
Benzo[a]anthracen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	41
Chrysen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	31
Benzo[b]fluoranthen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	32
Benzo[k]fluoranthen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	13
Benzo[a]pyren	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	26
Indeno[1,2,3-cd]pyren	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	14
Dibenzo[a,h]anthracen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	3,9
Benzo[ghi]perylen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	13
Summe 16 EPA-PAK exkl. BG	FR	F5	DIN ISO 18287: 2006-05		mg/kg TS	522
Summe 15 PAK ohne Naphthalin exkl. BG	FR	F5	DIN ISO 18287: 2006-05		mg/kg TS	520
Naphthalin	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	1,7
Acenaphthylen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,25
Acenaphthen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	19
Fluoren	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	23
Phenanthren	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	87
Anthracen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	35
Fluoranthen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	110
Pyren	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	72
Benzo[a]anthracen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	41
Chrysen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	31
Benzo[b]fluoranthen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	32
Benzo[k]fluoranthen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	13
Benzo[a]pyren	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	26
Indeno[1,2,3-cd]pyren	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	14
Dibenzo[a,h]anthracen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	3,9
Benzo[ghi]perylen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	13
Summe 16 PAK nach EBV: 2021	FR		berechnet		mg/kg TS	522
Summe 15 PAK ohne Naphthalin nach EBV: 2021	FR		berechnet		mg/kg TS	520

.ab. z R	Akkr.	Methode	Probennumn BG	ner	123144182
z R		Methode	BG		1
R	F5	•	50	Einheit	
R	F5				
	-	DIN EN 17322: 2021-03	0,01	mg/kg TS	n.n. ²⁾
R	F5	DIN EN 17322: 2021-03	0,01	mg/kg TS	n.n. ²⁾
	F5	DIN EN 17322: 2021-03	0,01	mg/kg TS	n.n. ²⁾
R	F5	DIN EN 17322: 2021-03	0,01	mg/kg TS	n.n. ²⁾
R	F5	DIN EN 17322: 2021-03	0,01	mg/kg TS	n.n. ²⁾
R	F5	DIN EN 17322: 2021-03	0,01	mg/kg TS	< 0,01
R		berechnet		mg/kg TS	0,005
R	F5	DIN EN 17322: 2021-03	0,01	mg/kg TS	n.n. ²⁾
R		berechnet		mg/kg TS	0,005
nicht	t-flüch	t. Par. nach DIN 19	529: 2015-12		
R	F5		10	FNU	20
dem	10:1-	Schütteleluat nach	DIN EN 1245	7-4: 2003-01	
R	F5	DIN EN ISO 10523 (C5): 2012-04			9,0
R	F5	DIN 38404-4 (C4): 1976-12		°C	20,7
R	F5	DIN EN 27888 (C8): 1993-11	5	μS/cm	209
R	F5	DIN EN 15216: 2008-01	0,15	Ma%	< 0,15
R	F5	DIN EN 15216: 2008-01	150	mg/l	< 150
Sen a	us de	m 2:1-Schütteleluat	nach DIN 19	529: 2015-12	
R	F5	DIN EN ISO 10523 (C5): 2012-04			8,4
R	F5	DIN 38404-4 (C4): 1976-12		°C	19,2
R	F5	DIN EN 27888 (C8): 1993-11	5	μS/cm	845
elelu	at nac	h DIN EN 12457-4:	2003-01		
R	F5	DIN EN ISO 10304-1 (D20): 2009-07	2,0	mg/l	< 2,0
R	F5	DIN EN ISO 10304-1 (D20): 2009-07	1,0	mg/l	21
R	F5	DIN EN ISO 10304-1 (D20): 2009-07	1,0	mg/l	12
R	F5	DIN EN ISO 14403-2: 2012-10	0,005	mg/l	< 0,005
lelua	t nach	DIN 19529: 2015-1	2		<u> </u>
R	F5	DIN EN ISO 10304-1 (D20): 2009-07	1,0	mg/l	80
	R R R R R R R R R R R R R R R R R R R	R	F5	F5	R F5 DIN EN 17322: 2021-03

				Probenbezeichnung		Bod 2 (LAGA) + Bod 6 (EBV)
				Probennumr	mer	123144182
Parameter	Lab.	Akkr.	Methode	BG	Einheit	
Elemente aus dem 10:1-So	hüttele	luat na	ch DIN EN 12457-4	2003-01		
Antimon (Sb)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	0,003
Arsen (As)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	0,018
Barium (Ba)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	0,006
Blei (Pb)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	< 0,001
Cadmium (Cd)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,0003	mg/l	< 0,0003
Chrom (Cr)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	< 0,001
Kupfer (Cu)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,005	mg/l	< 0,005
Molybdän (Mo)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	0,012
Nickel (Ni)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	< 0,001
Quecksilber (Hg)	FR	F5	DIN EN ISO 12846 (E12): 2012-08	0,0002	mg/l	< 0,0002
Selen (Se)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	0,001
Zink (Zn)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,01	mg/l	< 0,01
Elemente aus dem 2:1-Sch	ütteleli	uat nac	h DIN 19529: 2015-	12		
Arsen (As)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	0,004
Blei (Pb)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	< 0,001
Cadmium (Cd)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,0003	mg/l	< 0,0003
Chrom (Cr)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	< 0,001
Kupfer (Cu)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	0,001
Nickel (Ni)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	< 0,001
Quecksilber (Hg)	FR	F5	DIN EN ISO 12846 (E12): 2012-08	0,0001	mg/l	< 0,0001
Thallium (TI)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,0002	mg/l	< 0,0002
Zink (Zn)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,01	mg/l	< 0,01
Org. Summenparameter au	ıs dem	10:1-S	chütteleluat nach D	DIN EN 12457	-4: 2003-01	
Gelöster org. Kohlenstoff (DOC)	FR	F5	DIN EN 1484 (H3): 2019-04	1,0	mg/l	1,9
Phenolindex, wasserdampfflüchtig	FR	F5	DIN EN ISO 14402 (H37): 1999-12	0,01	mg/l	< 0,01

				Probenbezei	chnung	Bod 2 (LAGA) + Bod 6 (EBV)
				Probennumr	ner	123144182
Parameter	Lab.	Akkr.	Methode	BG	Einheit	
PAK aus dem 2:1-Schüttele	luat na	ch DI	N 19529: 2015-12			
Naphthalin	FR	F5	DIN 38407-39 (F39): 2011-09	0,05	μg/l	n.n. ²⁾
Acenaphthylen	FR	F5	DIN 38407-39 (F39): 2011-09	0,03	μg/l	n.n. ²⁾
Acenaphthen	FR	F5	DIN 38407-39 (F39): 2011-09	0,02	μg/l	0,15
Fluoren	FR	F5	DIN 38407-39 (F39): 2011-09	0,01	μg/l	0,03
Phenanthren	FR	F5	DIN 38407-39 (F39): 2011-09	0,02	μg/l	0,14
Anthracen	FR	F5	DIN 38407-39 (F39): 2011-09	0,008	μg/l	0,892
Pyren	FR	F5	DIN 38407-39 (F39): 2011-09	0,01	μg/l	0,22
Benzo[a]anthracen	FR	F5	DIN 38407-39 (F39): 2011-09	0,01	μg/l	0,09
Chrysen	FR	F5	DIN 38407-39 (F39): 2011-09	0,01	μg/l	0,28
Benzo[b]fluoranthen	FR	F5	DIN 38407-39 (F39): 2011-09	0,01	μg/l	0,09
Benzo[k]fluoranthen	FR	F5	DIN 38407-39 (F39): 2011-09	0,01	μg/l	0,04
Benzo[a]pyren	FR	F5	DIN 38407-39 (F39): 2011-09	0,008	μg/l	0,064
Indeno[1,2,3-cd]pyren	FR	F5	DIN 38407-39 (F39): 2011-09	0,01	μg/l	0,03
Fluoranthen	FR	F5	DIN 38407-39 (F39): 2011-09	0,02	μg/l	0,27
Dibenzo[a,h]anthracen	FR	F5	DIN 38407-39 (F39): 2011-09	0,008	μg/l	0,009
Benzo[ghi]perylen	FR	F5	DIN 38407-39 (F39): 2011-09	0,01	μg/l	0,04
Summe 16 PAK nach EBV: 2021	FR		berechnet		μg/l	2,34
Summe 15 PAK ohne Naphthalin nach EBV: 2021	FR		berechnet		μg/l	2,34
1-Methylnaphthalin	FR	F5	DIN 38407-39 (F39): 2011-09	0,01	μg/l	< 0,01
2-Methylnaphthalin	FR	F5	DIN 38407-39 (F39): 2011-09	0,01	μg/l	< 0,01
Summe Methylnaphthaline nach EBV: 2021	FR		berechnet		μg/l	0,010
Summe Methylnaphthaline + Naphthalin nach EBV: 2021	FR		berechnet		μg/l	0,010
PCB aus dem 2:1-Schüttele	luat na	ch DI	N 19529: 2015-12	•		
PCB 28	FR	F5	DIN 38407-37: 2013-11	0,001	μg/l	n.n. ²⁾
PCB 52	FR	F5	DIN 38407-37: 2013-11	0,001	μg/l	n.n. ²⁾
PCB 101	FR	F5	DIN 38407-37: 2013-11	0,001	μg/l	n.n. ²⁾
PCB 153	FR	F5	DIN 38407-37: 2013-11	0,001	μg/l	n.n. ²⁾
PCB 138	FR	F5	DIN 38407-37: 2013-11	0,001	μg/l	n.n. ²⁾
PCB 180	FR	F5	DIN 38407-37: 2013-11	0,001	μg/l	n.n. ²⁾
Summe 6 PCB nach EBV: 2021	FR		berechnet		μg/l	(n. b.) ³⁾
PCB 118	FR	F5	DIN 38407-37: 2013-11	0,001	μg/l	n.n. ²⁾
Summe 7 PCB nach EBV: 2021	FR		berechnet		μg/l	(n. b.) ³⁾

Erläuterungen

BG - Bestimmungsgrenze

Lab. - Kürzel des durchführenden Labors

Akkr. - Akkreditierungskürzel des Prüflabors

Kommentare zu Ergebnissen

- ¹⁾ Die Gleichwertigkeit zu DIN EN 13657: 2003-01 ist nachgewiesen. DIN EN ISO 54321:2021-04 wird als Referenzverfahren in der Methodensammlung FBU/LAGA Version 2.0 Stand 15.06.2021 ausdrücklich empfohlen. Zur Gleichwertigkeit von Aufschlussverfahren siehe für EBV: FAQ des LfU Bayern; für BBodSchV: §24.11.
- ²⁾ nicht nachweisbar
- 3) nicht berechenbar

Die mit FR gekennzeichneten Parameter wurden von der Eurofins Umwelt Ost GmbH (Lindenstraße 11, Gewerbegebiet Freiberg Ost, Bobritzsch-Hilbersdorf) analysiert. Die Bestimmung der mit F5 gekennzeichneten Parameter ist nach DIN EN ISO/IEC 17025:2018 DAkkS D-PL-14081-01-00 akkreditiert.

Probenbegleitprotokoll nach DIN 19747 - Juli 2009 - Anhang A

Probennummer 123144182

Probenbeschreibung Bod 2 (LAGA) + Bod 6 (EBV)

Probenvorbereitung

Probenehmer keine Angabe,

Probe(n) wurde(n) an

das Labor ausgehändigt

Probenahmeprotokoll (von der Feldprobe zur Laborprobe) liegt vor:

Nein

Fremdstoffe (Menge): 0,0 g
Fremdstoffe (Anteil): < 0,1 %
Fremdstoffe (Art): nein
Siebrückstand > 10mm: ja

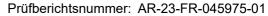
Siebrückstand wird auf < 10mm zerkleinert und dem Siebdurchgang beigemischt.

Probenteilung / Homogenisierung durch: Fraktionierendes Teilen

Rückstellprobe: 3510 g

Probenaufarbeitung (von der Prüfprobe zur Messprobe) ****)

Nr.	DK0	DKI, II, III	REK	Parameter	Zerkleinern **)	Trocknen	Feinzerkleinern ***)	Probenmenge
0	Х	Х	Х	Trockenmasse	< 5 mm	Nein	Nein	15 g
1.01	Х	Х		Glühverlust	< 5 mm	40 °C	< 150 µm	10 g
1.02	Х	Х		TOC	< 5 mm	40 °C	< 150 µm	2 g
2.01	Х			BTEX	Originalprobe (Stichprobe)	Nein	Nein	20 g + 20 ml Methanol
2.02 + 2.04	Х		Х	PAK/PCB	< 5 mm	Nein	Nein	12,5 g
2.03	Х			MKW (C10 - C40)	< 5 mm	Nein	Nein	20 g
2.07	Х	Х		Lipophile Stoffe	< 5 mm	Verreiben mit Natriumsulfat	Nein	20 g
2.08 - 2.14			X	Metalle, Königswasser- aufschluss	< 5 mm	40 °C	< 150 μm	3 g
3.01 - 3.21	Х	Х	Х	Eluat	Nein/ < 10 mm	Nein	Nein	100 g
1.01/1.02 *)	Х	Х		C-elementar	< 5 mm	40 °C	< 150 µm	2 g
1.01/1.02 *)	Х	Х		AT4	< 10 mm	Nein	Nein	300 g
1.01/1.02 *)	Х	Х		GB21	< 10 mm	Nein	Nein	200 g
1.01/1.02 *)	X	Х		Brennwert	< 5 mm	105 °C	< 150 µm	5 g


Die Ergebnisse beziehen sich auf das sortenreine Prüfprobenmaterial nach Entfernung der Fremdmaterialien gemäß DIN 19747:2009-07.

*) Zusatzparameter bei Überschreitung der genannten Grenzwerte

**) Zerkleinern mittels Backenbrecher mit Wolframkarbid-Backen

***) Feinzerkleinerung mittels Laborbackenbrecher BB51 mit Wolframkarbid-Backen

****) Maximalumfang; gilt nur für die beauftragten Parameter

Seite 1 von 8

Eurofins Umwelt Ost GmbH - Lindenstraße 11 - Gewerbegebiet Freiberg Ost - D-09627 Bobritzsch-Hilbersdorf

Ingenieurbüro ECKERT GmbH Crusiusstraße 7 09120 Chemnitz

Titel: Prüfbericht zu Auftrag 12340232

Prüfberichtsnummer: AR-23-FR-045975-01

Auftragsbezeichnung: Reg.-Nr.: 08371-118, Proj.-Nr.: 16788/4013

Anzahl Proben: 1

Probenart: Boden

Probenehmer: keine Angabe, Probe(n) wurde(n) an das Labor ausgehändigt

Probeneingangsdatum: 13.09.2023

Prüfzeitraum: 13.09.2023 - 04.10.2023

Kommentar: Die Nachuntersuchung nach DepV DK I-III wird veranlasst.

Die Prüfergebnisse beziehen sich ausschließlich auf die untersuchten Prüfgegenstände. Sofern die Probenahme nicht durch unser Labor oder in unserem Auftrag erfolgte, wird hierfür keine Gewähr übernommen. Dieser Prüfbericht enthält eine qualifizierte elektronische Signatur und darf nur vollständig und unverändert weiterverbreitet werden. Auszüge oder Änderungen bedürfen in jedem Einzelfall der Genehmigung der EUROFINS UMWELT.

Es gelten die Allgemeinen Verkaufsbedingungen (AVB), sofern nicht andere Regelungen vereinbart sind. Die aktuellen AVB können Sie unter http://www.eurofins.de/umwelt/avb.aspx einsehen.

Das beauftragte Prüflaboratorium ist durch die DAkkS nach DIN EN ISO/IEC 17025:2018 DAkkS akkreditiert. Die Akkreditierung gilt nur für den in der Urkundenanlage (D-PL-14081-01-00) aufgeführten Umfang.

Anhänge:

XML_Export_AR-23-FR-045975-01.xml

Mario Thielemann Prüfleitung (Chemnitz)

+49 371 3343560

Digital signiert, 04.10.2023 Mario Thielemann Prüfleitung (Chemnitz)

D-07749 Jena

				Probenbezeichnung		Bod 3 (LAGA) + Bod 7 (EBV), (3/6a/b)	
				Probennum	mer	123143863	
Parameter	Lab.	Akkr.	Methode	BG	Einheit		
Probenvorbereitung Fests	toffe	<u>'</u>					
Königswasseraufschluss (angewandte Methode)	FR	F5	L8:DIN EN 13657:2003-01;F5:DIN EN ISO 54321:2021-4			mittels thermoregu- lierbarem Graphitblock	
Probenmenge inkl. Verpackung	FR	F5	DIN 19747: 2009-07		kg	3,39	
Fremdstoffe (Art)	FR	F5	DIN 19747: 2009-07			nein	
Fremdstoffe (Menge)	FR	F5	DIN 19747: 2009-07		g	0,0	
Siebrückstand > 10mm	FR	F5	DIN 19747: 2009-07			ja	
Fremdstoffe (Anteil)	FR	F5	DIN 19747: 2009-07	0,1	%	< 0,1	
Physikalisch-chemische P	Kenngrö	ßen au	ıs der Originalsubs	tanz			
Trockenmasse	FR	F5	DIN EN 14346: 2007-03	0,1	Ma%	81,8	
Aussehen (qualitativ)	FR	F5	DIN EN ISO 14688-1: 2018-05			Boden ohne Fremdbe- standteile	
Farbe qualit.	FR	F5	DIN EN ISO 14688-1: 2018-05			schwarz	
Geruch (qualitativ)	FR	F5	DIN EN ISO 14688-1: 2018-05			ohne	
Elemente aus dem Königs	wasser	aufsch	luss				
Arsen (As)	FR	F5	DIN EN 16171:2017-01	0,8	mg/kg TS	76,2	
Arsen (As)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,8	mg/kg TS	76,2	
Blei (Pb)	FR	F5	DIN EN 16171:2017-01	2	mg/kg TS	342	
Blei (Pb)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	2	mg/kg TS	342	
Cadmium (Cd)	FR	F5	DIN EN 16171:2017-01	0,2	mg/kg TS	13,9	
Cadmium (Cd)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,2	mg/kg TS	13,9	
Chrom (Cr)	FR	F5	DIN EN 16171:2017-01	1	mg/kg TS	32	
Chrom (Cr)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	1	mg/kg TS	32	
Kupfer (Cu)	FR	F5	DIN EN 16171:2017-01	1	mg/kg TS	81	
Kupfer (Cu)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	1	mg/kg TS	81	
Nickel (Ni)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	1	mg/kg TS	82	
Nickel (Ni)	FR	F5	DIN EN 16171:2017-01	1	mg/kg TS	82	
Quecksilber (Hg)	FR	F5	DIN EN 16171:2017-01	0,07	mg/kg TS	0,87	
Quecksilber (Hg)	FR	F5	DIN EN ISO 12846 (E12): 2012-08	0,07	mg/kg TS	0,96	
Thallium (TI)	FR	F5	DIN EN 16171:2017-01	0,2	mg/kg TS	0,3	
Zink (Zn)	FR	F5	DIN EN 16171:2017-01	1	mg/kg TS	2110	
Zink (Zn)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	1	mg/kg TS	2110	

	Probenbezeichnung				Bod 3 (LAGA) + Bod 7 (EBV), (3/6a/b)			
				Probennum	mer	123143863		
Parameter	Lab.	Akkr.	Methode	BG	Einheit			
Organische Summenparame	eter au	is der	Originalsubstanz	-1				
тос	FR	F5	DIN EN 15936: 2012-11 (AN,L8: Ver.A; FG,F5: Ver.B)	0,1	Ma% TS	14		
EOX	FR	F5	DIN 38414-17 (S17): 2017-01	1,0	mg/kg TS	< 1,0		
Kohlenwasserstoffe C10-C22	FR	F5	DIN EN 14039: 2005-01/LAGA KW/04: 2019-09	40	mg/kg TS	< 40		
Kohlenwasserstoffe C10-C40	FR	F5	DIN EN 14039: 2005-01/LAGA KW/04: 2019-09	40	mg/kg TS	< 40		

				Probenbezei	chnung	Bod 3 (LAGA) + Bod 7 (EBV), (3/6a/b)
				Probennumn	ner	123143863
Parameter	Lab.	Akkr.	Methode	BG	Einheit	
PAK aus der Originalsubsta	nz					
Naphthalin	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,14
Acenaphthylen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Acenaphthen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,08
Fluoren	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,07
Phenanthren	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,36
Anthracen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,09
Fluoranthen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,29
Pyren	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,21
Benzo[a]anthracen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,17
Chrysen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,15
Benzo[b]fluoranthen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,21
Benzo[k]fluoranthen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,08
Benzo[a]pyren	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,14
Indeno[1,2,3-cd]pyren	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,09
Dibenzo[a,h]anthracen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05
Benzo[ghi]perylen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,13
Summe 16 EPA-PAK exkl. BG	FR	F5	DIN ISO 18287: 2006-05		mg/kg TS	2,21
Summe 15 PAK ohne Naphthalin exkl. BG	FR	F5	DIN ISO 18287: 2006-05		mg/kg TS	2,07
Naphthalin	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,14
Acenaphthylen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Acenaphthen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,08
Fluoren	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,07
Phenanthren	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,36
Anthracen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,09
Fluoranthen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,29
Pyren	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,21
Benzo[a]anthracen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,17
Chrysen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,15
Benzo[b]fluoranthen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,21
Benzo[k]fluoranthen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,08
Benzo[a]pyren	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,14
Indeno[1,2,3-cd]pyren	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,09
Dibenzo[a,h]anthracen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05
Benzo[ghi]perylen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,13
Summe 16 PAK nach EBV: 2021	FR		berechnet		mg/kg TS	2,24
Summe 15 PAK ohne Naphthalin nach EBV: 2021	FR		berechnet		mg/kg TS	2,10

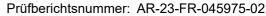
				Probenbezeichnung		Bod 3 (LAGA) + Bod 7 (EBV), (3/6a/b)
			1	Probennumr	-	123143863
Parameter	Lab.	Akkr.	Methode	BG	Einheit	
PCB aus der Originalsubsta			T		" T 0	0.04
PCB 28	FR	F5	DIN EN 17322: 2021-03	0,01	mg/kg TS	< 0,01
PCB 52	FR	F5	DIN EN 17322: 2021-03	0,01	mg/kg TS	n.n. ²⁾
PCB 101	FR	F5	DIN EN 17322: 2021-03	0,01	mg/kg TS	< 0,01
PCB 153	FR	F5	DIN EN 17322: 2021-03	0,01	mg/kg TS	< 0,01
PCB 138	FR	F5	DIN EN 17322: 2021-03	0,01	mg/kg TS	n.n. ²⁾
PCB 180	FR	F5	DIN EN 17322: 2021-03	0,01	mg/kg TS	< 0,01
Summe 6 PCB nach EBV: 2021	FR		berechnet		mg/kg TS	0,020
PCB 118	FR	F5	DIN EN 17322: 2021-03	0,01	mg/kg TS	n.n. ²⁾
Summe 7 PCB nach EBV: 2021	FR		berechnet		mg/kg TS	0,020
Kenngr. d. Eluatherst. f. org	., nich	t-flüch	it. Par. nach DIN 19	529: 2015-12		
Trübung im Eluat nach DIN EN ISO 7027: 2000-04	FR	F5		10	FNU	10
Physchem. Kenngrößen a	us den	n 10:1-	Schütteleluat nach	DIN EN 1245	7-4: 2003-01	
pH-Wert	FR	F5	DIN EN ISO 10523 (C5): 2012-04			8,4
Temperatur pH-Wert	FR	F5	DIN 38404-4 (C4): 1976-12		°C	14,3
Leitfähigkeit bei 25°C	FR	F5	DIN EN 27888 (C8): 1993-11	5	μS/cm	330
Physikalisch-chem. Kenngr	ößen a	aus de		nach DIN 19	529: 2015-12	
pH-Wert	FR	F5	DIN EN ISO 10523 (C5): 2012-04			8,0
Temperatur pH-Wert	FR	F5	DIN 38404-4 (C4): 1976-12		°C	18,4
Leitfähigkeit bei 25°C	FR	F5	DIN EN 27888 (C8): 1993-11	5	μS/cm	1380
Anionen aus dem 10:1-Schi	ittelelı			2003-01		
Chlorid (CI)	FR	F5	DIN EN ISO 10304-1 (D20): 2009-07	1,0	mg/l	54
Sulfat (SO4)	FR	F5	DIN EN ISO 10304-1 (D20): 2009-07	1,0	mg/l	23
Anionen aus dem 2:1-Schüt	telelu	at nacl	n DIN 19529: 2015-1	2		
Sulfat (SO4)	FR	F5	DIN EN ISO 10304-1 (D20): 2009-07	1,0	mg/l	110
Elemente aus dem 10:1-Sch	üttele	luat na	nch DIN EN 12457-4	2003-01		
Arsen (As)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	0,031
Blei (Pb)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	0,001
Cadmium (Cd)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,0003	mg/l	< 0,0003
Chrom (Cr)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	< 0,001
Kupfer (Cu)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,005	mg/l	< 0,005
Nickel (Ni)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	< 0,001
Quecksilber (Hg)	FR	F5	DIN EN ISO 12846 (E12): 2012-08	0,0002	mg/l	< 0,0002
Zink (Zn)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,01	mg/l	0,02

			, iiiwoit			
			Ī	Probenbeze	Bod 3 (LAGA) + Bod 7 (EBV), (3/6a/b)	
				Probennum	mer	123143863
Parameter	Lab.	Akkr.	Methode	BG	Einheit	
Elemente aus dem 2:1	-Schüttelel	uat nac	h DIN 19529: 2015-	12		
Arsen (As)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	0,023
Blei (Pb)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	< 0,001
Cadmium (Cd)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,0003	mg/l	0,0009
Chrom (Cr)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	< 0,001
Kupfer (Cu)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	< 0,001
Nickel (Ni)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	< 0,001
Quecksilber (Hg)	FR	F5	DIN EN ISO 12846 (E12): 2012-08	0,0001	mg/l	< 0,0001
Thallium (TI)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,0002	mg/l	< 0,0002
Zink (Zn)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,01	mg/l	0,15

				Probenbezei		Bod 3 (LAGA) + Bod 7 (EBV), (3/6a/b)	
				Probennumr	ner	123143863	
Parameter			Methode	BG	Einheit		
PAK aus dem 2:1-Schüttele	luat na	ch DIN					
Naphthalin	FR	F5	DIN 38407-39 (F39): 2011-09	0,05	μg/l	n.n. ²⁾	
Acenaphthylen	FR	F5	DIN 38407-39 (F39): 2011-09	0,03	μg/l	n.n. ²⁾	
Acenaphthen	FR	F5	DIN 38407-39 (F39): 2011-09	0,02	μg/l	< 0,02	
Fluoren	FR	F5	DIN 38407-39 (F39): 2011-09	0,01	μg/l	< 0,01	
Phenanthren	FR	F5	DIN 38407-39 (F39): 2011-09	0,02	μg/l	n.n. ²⁾	
Anthracen	FR	F5	DIN 38407-39 (F39): 2011-09	0,008	μg/l	n.n. ²⁾	
Pyren	FR	F5	DIN 38407-39 (F39): 2011-09	0,01	μg/l	n.n. ²⁾	
Benzo[a]anthracen	FR	F5	DIN 38407-39 (F39): 2011-09	0,01	μg/l	n.n. ²⁾	
Chrysen	FR	F5	DIN 38407-39 (F39): 2011-09	0,01	μg/l	n.n. ²⁾	
Benzo[b]fluoranthen	FR	F5	DIN 38407-39 (F39): 2011-09	0,01	μg/l	n.n. ²⁾	
Benzo[k]fluoranthen	FR	F5	DIN 38407-39 (F39): 2011-09	0,01	μg/l	n.n. ²⁾	
Benzo[a]pyren	FR	F5	DIN 38407-39 (F39): 2011-09	0,008	μg/l	n.n. ²⁾	
Indeno[1,2,3-cd]pyren	FR	F5	DIN 38407-39 (F39): 2011-09	0,01	μg/l	n.n. ²⁾	
Fluoranthen	FR	F5	DIN 38407-39 (F39): 2011-09	0,02	μg/l	n.n. ²⁾	
Dibenzo[a,h]anthracen	FR	F5	DIN 38407-39 (F39): 2011-09	0,008	μg/l	n.n. ²⁾	
Benzo[ghi]perylen	FR	F5	DIN 38407-39 (F39): 2011-09	0,01	μg/l	n.n. ²⁾	
Summe 16 PAK nach EBV: 2021	FR		berechnet		μg/l	0,015	
Summe 15 PAK ohne Naphthalin nach EBV: 2021	FR		berechnet		μg/l	0,015	
1-Methylnaphthalin	FR	F5	DIN 38407-39 (F39): 2011-09	0,01	μg/l	n.n. ²⁾	
2-Methylnaphthalin	FR	F5	DIN 38407-39 (F39): 2011-09	0,01	μg/l	< 0,01	
Summe Methylnaphthaline nach EBV: 2021	FR		berechnet		μg/l	0,005	
Summe Methylnaphthaline + Naphthalin nach EBV: 2021	FR		berechnet		μg/l	0,005	
PCB aus dem 2:1-Schüttele	luat na	ch DIN	N 19529: 2015-12				
PCB 28	FR	F5	DIN 38407-37: 2013-11	0,001	μg/l	n.n. ²⁾	
PCB 52	FR	F5	DIN 38407-37: 2013-11	0,001	μg/l	n.n. ²⁾	
PCB 101	FR	F5	DIN 38407-37: 2013-11	0,001	μg/l	n.n. ²⁾	
PCB 153	FR	F5	DIN 38407-37: 2013-11	0,001	μg/l	n.n. ²⁾	
PCB 138	FR	F5	DIN 38407-37: 2013-11	0,001	μg/l	n.n. ²⁾	
PCB 180	FR	F5	DIN 38407-37: 2013-11	0,001	μg/l	n.n. ²⁾	
Summe 6 PCB nach EBV: 2021	FR		berechnet		μg/l	(n. b.) ³⁾	
PCB 118	FR	F5	DIN 38407-37: 2013-11	0,001	μg/l	n.n. ²⁾	
Summe 7 PCB nach EBV: 2021	FR		berechnet		μg/l	(n. b.) ³⁾	

Erläuterungen

BG - Bestimmungsgrenze


Lab. - Kürzel des durchführenden Labors

Akkr. - Akkreditierungskürzel des Prüflabors

Kommentare zu Ergebnissen

- ¹⁾ Die Gleichwertigkeit zu DIN EN 13657: 2003-01 ist nachgewiesen. DIN EN ISO 54321:2021-04 wird als Referenzverfahren in der Methodensammlung FBU/LAGA Version 2.0 Stand 15.06.2021 ausdrücklich empfohlen. Zur Gleichwertigkeit von Aufschlussverfahren siehe für EBV: FAQ des LfU Bayern; für BBodSchV: §24.11.
- ²⁾ nicht nachweisbar
- 3) nicht berechenbar

Die mit FR gekennzeichneten Parameter wurden von der Eurofins Umwelt Ost GmbH (Lindenstraße 11, Gewerbegebiet Freiberg Ost, Bobritzsch-Hilbersdorf) analysiert. Die Bestimmung der mit F5 gekennzeichneten Parameter ist nach DIN EN ISO/IEC 17025:2018 DAkkS D-PL-14081-01-00 akkreditiert.

Seite 1 von 9

Eurofins Umwelt Ost GmbH - Lindenstraße 11 - Gewerbegebiet Freiberg Ost - D-09627 Bobritzsch-Hilbersdorf

Ingenieurbüro ECKERT GmbH Crusiusstraße 7 09120 Chemnitz

Dieser Prüfbericht ersetzt den Prüfbericht Nr. AR-23-FR-045975-01 vom 04.10.2023 aufgrund von Erweiterung des Prüfumfangs.

Titel: Prüfbericht zu Auftrag 12340232

Prüfberichtsnummer: AR-23-FR-045975-02

Auftragsbezeichnung: Reg.-Nr.: 08371-118, Proj.-Nr.: 16788/4013

Anzahl Proben: 1

Probenart: Boden

Probenehmer: keine Angabe, Probe(n) wurde(n) an das Labor ausgehändigt

Probeneingangsdatum: 13.09.2023

Prüfzeitraum: 13.09.2023 - 12.10.2023

Kommentar: Nachuntersuchung nach DepV DK I-III.

Die Prüfergebnisse beziehen sich ausschließlich auf die untersuchten Prüfgegenstände. Sofern die Probenahme nicht durch unser Labor oder in unserem Auftrag erfolgte, wird hierfür keine Gewähr übernommen. Dieser Prüfbericht enthält eine qualifizierte elektronische Signatur und darf nur vollständig und unverändert weiterverbreitet werden. Auszüge oder Änderungen bedürfen in jedem Einzelfall der Genehmigung der EUROFINS UMWELT.

Es gelten die Allgemeinen Verkaufsbedingungen (AVB), sofern nicht andere Regelungen vereinbart sind. Die aktuellen AVB können Sie unter http://www.eurofins.de/umwelt/avb.aspx einsehen.

Das beauftragte Prüflaboratorium ist durch die DAkkS nach DIN EN ISO/IEC 17025:2018 DAkkS akkreditiert. Die Akkreditierung gilt nur für den in der Urkundenanlage (D-PL-14081-01-00) aufgeführten Umfang.

Anhänge:

XML_Export_AR-23-FR-045975-02.xml

Mario Thielemann Prüfleitung (Chemnitz)

+49 371 3343560

Digital signiert, 12.10.2023 Mario Thielemann Prüfleitung (Chemnitz)

Deutsche

Akkreditierungsstelle

D-PL-14081-01-00

Umwelt

				Probenbeze	Bod 3 (LAGA) + Bod 7 (EBV), (3/6a/b)	
				Probennum	mer	123143863
Parameter	Lab.	Akkr.	Methode	BG	Einheit	
Probenvorbereitung Fests	stoffe			<u> </u>		
Königswasseraufschluss (angewandte Methode)	FR	F5	L8:DIN EN 13657:2003-01;F5:DIN EN ISO 54321:2021-4			mittels thermoregu- lierbarem Graphitblock
Probenbegleitprotokoll	FR					siehe Anlage
Probenmenge inkl. Verpackung	FR	F5	DIN 19747: 2009-07		kg	3,39
Fremdstoffe (Art)	FR	F5	DIN 19747: 2009-07			nein
Fremdstoffe (Menge)	FR	F5	DIN 19747: 2009-07		g	0,0
Siebrückstand > 10mm	FR	F5	DIN 19747: 2009-07			ja
Fremdstoffe (Anteil)	FR	F5	DIN 19747: 2009-07	0,1	%	< 0,1
Rückstellprobe	FR		Hausmethode	100	g	1270
Physikalisch-chemische k	Kenngrö	ßen au	ıs der Originalsubs	tanz		1
Trockenmasse	FR	F5	DIN EN 14346: 2007-03	0,1	Ma%	81,8
Aussehen (qualitativ)	FR	F5	DIN EN ISO 14688-1: 2018-05			Boden ohne Fremdbe- standteile
Farbe qualit.	FR	F5	DIN EN ISO 14688-1: 2018-05			schwarz
Geruch (qualitativ)	FR	F5	DIN EN ISO 14688-1: 2018-05			ohne
Elemente aus dem Königs	swasser	aufsch	luss			
Arsen (As)	FR	F5	DIN EN 16171:2017-01	0,8	mg/kg TS	76,2
Arsen (As)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,8	mg/kg TS	76,2
Blei (Pb)	FR	F5	DIN EN 16171:2017-01	2	mg/kg TS	342
Blei (Pb)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	2	mg/kg TS	342
Cadmium (Cd)	FR	F5	DIN EN 16171:2017-01	0,2	mg/kg TS	13,9
Cadmium (Cd)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,2	mg/kg TS	13,9
Chrom (Cr)	FR	F5	DIN EN 16171:2017-01	1	mg/kg TS	32
Chrom (Cr)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	1	mg/kg TS	32
Kupfer (Cu)	FR	F5	DIN EN 16171:2017-01	1	mg/kg TS	81
Kupfer (Cu)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	1	mg/kg TS	81
Nickel (Ni)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	1	mg/kg TS	82
Nickel (Ni)	FR	F5	DIN EN 16171:2017-01	1	mg/kg TS	82
Quecksilber (Hg)	FR	F5	DIN EN 16171:2017-01	0,07	mg/kg TS	0,87
Quecksilber (Hg)	FR	F5	DIN EN ISO 12846 (E12): 2012-08	0,07	mg/kg TS	0,96
Thallium (TI)	FR	F5	DIN EN 16171:2017-01	0,2	mg/kg TS	0,3
Zink (Zn)	FR	F5	DIN EN 16171:2017-01	1	mg/kg TS	2110
Zink (Zn)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	1	mg/kg TS	2110

(E29): 2017-01

				Probenbeze	Bod 3 (LAGA) + Bod 7 (EBV), (3/6a/b)			
				Probennum	mer	123143863		
Parameter	Lab.	Akkr.	Methode	BG	Einheit			
Organische Summenparameter aus der Originalsubstanz								
Glühverlust (550 °C)	FR	F5	DIN EN 15169: 2007-05	0,1	Ma% TS	17,8		
тос	FR	F5	DIN EN 15936: 2012-11 (AN,L8: Ver.A; FG,F5: Ver.B)	0,1	Ma% TS	14		
EOX	FR	F5	DIN 38414-17 (S17): 2017-01	1,0	mg/kg TS	< 1,0		
Extrahierbare lipophile Stoffe	FR	F5	LAGA KW/04: 2019-09	0,02	Ma% TS	< 0,02		
Kohlenwasserstoffe C10-C22	FR	F5	DIN EN 14039: 2005-01/LAGA KW/04: 2019-09	40	mg/kg TS	< 40		
Kohlenwasserstoffe C10-C40	FR	F5	DIN EN 14039: 2005-01/LAGA KW/04: 2019-09	40	mg/kg TS	< 40		

				Probenbezeichnung		Bod 3 (LAGA) + Bod 7 (EBV), (3/6a/b)
				Probennumn	ner	123143863
Parameter	Lab.	Akkr.	Methode	BG	Einheit	
PAK aus der Originalsubsta	ınz		1			
Naphthalin	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,14
Acenaphthylen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Acenaphthen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,08
Fluoren	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,07
Phenanthren	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,36
Anthracen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,09
Fluoranthen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,29
Pyren	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,21
Benzo[a]anthracen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,17
Chrysen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,15
Benzo[b]fluoranthen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,21
Benzo[k]fluoranthen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,08
Benzo[a]pyren	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,14
Indeno[1,2,3-cd]pyren	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,09
Dibenzo[a,h]anthracen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05
Benzo[ghi]perylen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,13
Summe 16 EPA-PAK exkl. BG	FR	F5	DIN ISO 18287: 2006-05		mg/kg TS	2,21
Summe 15 PAK ohne Naphthalin exkl. BG	FR	F5	DIN ISO 18287: 2006-05		mg/kg TS	2,07
Naphthalin	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,14
Acenaphthylen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Acenaphthen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,08
Fluoren	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,07
Phenanthren	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,36
Anthracen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,09
Fluoranthen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,29
Pyren	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,21
Benzo[a]anthracen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,17
Chrysen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,15
Benzo[b]fluoranthen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,21
Benzo[k]fluoranthen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,08
Benzo[a]pyren	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,14
Indeno[1,2,3-cd]pyren	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,09
Dibenzo[a,h]anthracen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05
Benzo[ghi]perylen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,13
Summe 16 PAK nach EBV: 2021	FR		berechnet		mg/kg TS	2,24
Summe 15 PAK ohne Naphthalin nach EBV: 2021	FR		berechnet		mg/kg TS	2,10

				Probenbezeichnung		Bod 3 (LAGA) + Bod 7 (EBV), (3/6a/b)
				Probennum	ner	123143863
Parameter	Lab.	Akkr.	Methode	BG	Einheit	
PCB aus der Originalsubst	anz			•		
PCB 28	FR	F5	DIN EN 17322: 2021-03	0,01	mg/kg TS	< 0,01
PCB 52	FR	F5	DIN EN 17322: 2021-03	0,01	mg/kg TS	n.n. ²⁾
PCB 101	FR	F5	DIN EN 17322: 2021-03	0,01	mg/kg TS	< 0,01
PCB 153	FR	F5	DIN EN 17322: 2021-03	0,01	mg/kg TS	< 0,01
PCB 138	FR	F5	DIN EN 17322: 2021-03	0,01	mg/kg TS	n.n. ²⁾
PCB 180	FR	F5	DIN EN 17322: 2021-03	0,01	mg/kg TS	< 0,01
Summe 6 PCB nach EBV: 2021	FR		berechnet		mg/kg TS	0,020
PCB 118	FR	F5	DIN EN 17322: 2021-03	0,01	mg/kg TS	n.n. ²⁾
Summe 7 PCB nach EBV: 2021	FR		berechnet		mg/kg TS	0,020
Kenngr. d. Eluatherst. f. org	g., nich	t-flüch	it. Par. nach DIN 19	529: 2015-12	l	
Trübung im Eluat nach DIN EN ISO 7027: 2000-04	FR	F5		10	FNU	10
Physchem. Kenngrößen a	us der	n 10:1-	Schütteleluat nach	DIN EN 1245	7-4: 2003-01	
pH-Wert	FR	F5	DIN EN ISO 10523 (C5): 2012-04			8,4
Temperatur pH-Wert	FR	F5	DIN 38404-4 (C4): 1976-12		°C	14,3
Leitfähigkeit bei 25°C	FR	F5	DIN EN 27888 (C8): 1993-11	5	μS/cm	330
Wasserlöslicher Anteil	FR	F5	DIN EN 15216: 2008-01	0,15	Ma%	0,19
Gesamtgehalt an gelösten Feststoffen	FR	F5	DIN EN 15216: 2008-01	150	mg/l	190
Physikalisch-chem. Kenng	rößen	aus de	m 2:1-Schüttelelua	t nach DIN 19	529: 2015-12	
pH-Wert	FR	F5	DIN EN ISO 10523 (C5): 2012-04			8,0
Temperatur pH-Wert	FR	F5	DIN 38404-4 (C4): 1976-12		°C	18,4
Leitfähigkeit bei 25°C	FR	F5	DIN EN 27888 (C8): 1993-11	5	μS/cm	1380
Anionen aus dem 10:1-Sch	üttelel	uat nac	ch DIN EN 12457-4:	2003-01		
Fluorid	FR	F5	DIN EN ISO 10304-1 (D20): 2009-07	2,0	mg/l	< 2,0
Chlorid (CI)	FR	F5	DIN EN ISO 10304-1 (D20): 2009-07	1,0	mg/l	54
Sulfat (SO4)	FR	F5	DIN EN ISO 10304-1 (D20): 2009-07	1,0	mg/l	23
Cyanid leicht freisetzbar / Cyanid frei	FR	F5	DIN EN ISO 14403-2: 2012-10	0,005	mg/l	< 0,005
Anionen aus dem 2:1-Schü	ttelelu	at nacl	n DIN 19529: 2015-1	12		
Sulfat (SO4)	FR	F5	DIN EN ISO 10304-1 (D20): 2009-07	1,0	mg/l	110

				Probenbezeichnung		Bod 3 (LAGA) + Bod 7 (EBV), (3/6a/b)					
			1	Probennumr		123143863					
Parameter	Lab.		Methode	BG	Einheit						
Elemente aus dem 10:1-Schütteleluat nach DIN EN 12457-4: 2003-01											
Antimon (Sb)	FR	F5	(E29): 2017-01	0,001	mg/l	0,017					
Arsen (As)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	0,031					
Barium (Ba)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	0,026					
Blei (Pb)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	0,001					
Cadmium (Cd)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,0003	mg/l	< 0,0003					
Chrom (Cr)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	< 0,001					
Kupfer (Cu)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,005	mg/l	< 0,005					
Molybdän (Mo)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	0,043					
Nickel (Ni)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	< 0,001					
Quecksilber (Hg)	FR	F5	DIN EN ISO 12846 (E12): 2012-08	0,0002	mg/l	< 0,0002					
Selen (Se)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	< 0,001					
Zink (Zn)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,01	mg/l	0,02					
Elemente aus dem 2:1-Sc	hüttelelı	uat nac	ch DIN 19529: 2015-	12							
Arsen (As)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	0,023					
Blei (Pb)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	< 0,001					
Cadmium (Cd)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,0003	mg/l	0,0009					
Chrom (Cr)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	< 0,001					
Kupfer (Cu)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	< 0,001					
Nickel (Ni)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	< 0,001					
Quecksilber (Hg)	FR	F5	DIN EN ISO 12846 (E12): 2012-08	0,0001	mg/l	< 0,0001					
Thallium (TI)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,0002	mg/l	< 0,0002					
Zink (Zn)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,01	mg/l	0,15					
Org. Summenparameter a	us dem	10:1-S	chütteleluat nach D	IN EN 12457-	4: 2003-01						
Gelöster org. Kohlenstoff (DOC)	FR	F5	DIN EN 1484 (H3): 2019-04	1,0	mg/l	1,3					
Phenolindex, wasserdampfflüchtig	FR	F5	DIN EN ISO 14402 (H37): 1999-12	0,01	mg/l	< 0,01					
			1	L	l						

				Probenbezeichnung		Bod 3 (LAGA) + Bod 7 (EBV), (3/6a/b)	
				Probennumi	mer	123143863	
Parameter	Lab.		. Methode	BG	Einheit		
PAK aus dem 2:1-Schüttele	luat n	ach Di	N 19529: 2015-12	•			
Naphthalin	FR	F5	DIN 38407-39 (F39): 2011-09	0,05	μg/l	n.n. ²⁾	
Acenaphthylen	FR	F5	DIN 38407-39 (F39): 2011-09	0,03	μg/l	n.n. ²⁾	
Acenaphthen	FR	F5	DIN 38407-39 (F39): 2011-09	0,02	μg/l	< 0,02	
Fluoren	FR	F5	DIN 38407-39 (F39): 2011-09	0,01	μg/l	< 0,01	
Phenanthren	FR	F5	DIN 38407-39 (F39): 2011-09	0,02	μg/l	n.n. ²⁾	
Anthracen	FR	F5	DIN 38407-39 (F39): 2011-09	0,008	μg/l	n.n. ²⁾	
Pyren	FR	F5	DIN 38407-39 (F39): 2011-09	0,01	μg/l	n.n. ²⁾	
Benzo[a]anthracen	FR	F5	DIN 38407-39 (F39): 2011-09	0,01	μg/l	n.n. ²⁾	
Chrysen	FR	F5	DIN 38407-39 (F39): 2011-09	0,01	μg/l	n.n. ²⁾	
Benzo[b]fluoranthen	FR	F5	DIN 38407-39 (F39): 2011-09	0,01	μg/l	n.n. ²⁾	
Benzo[k]fluoranthen	FR	F5	DIN 38407-39 (F39): 2011-09	0,01	μg/l	n.n. ²⁾	
Benzo[a]pyren	FR	F5	DIN 38407-39 (F39): 2011-09	0,008	μg/l	n.n. ²⁾	
Indeno[1,2,3-cd]pyren	FR	F5	DIN 38407-39 (F39): 2011-09	0,01	μg/l	n.n. ²⁾	
Fluoranthen	FR	F5	DIN 38407-39 (F39): 2011-09	0,02	μg/l	n.n. ²⁾	
Dibenzo[a,h]anthracen	FR	F5	DIN 38407-39 (F39): 2011-09	0,008	μg/l	n.n. ²⁾	
Benzo[ghi]perylen	FR	F5	DIN 38407-39 (F39): 2011-09	0,01	μg/l	n.n. ²⁾	
Summe 16 PAK nach EBV: 2021	FR		berechnet		μg/l	0,015	
Summe 15 PAK ohne Naphthalin nach EBV: 2021	FR		berechnet		μg/l	0,015	
1-Methylnaphthalin	FR	F5	DIN 38407-39 (F39): 2011-09	0,01	μg/l	n.n. ²⁾	
2-Methylnaphthalin	FR	F5	DIN 38407-39 (F39): 2011-09	0,01	μg/l	< 0,01	
Summe Methylnaphthaline nach EBV: 2021	FR		berechnet		μg/l	0,005	
Summe Methylnaphthaline + Naphthalin nach EBV: 2021	FR		berechnet		μg/l	0,005	
PCB aus dem 2:1-Schüttele	luat n	ach Di	N 19529: 2015-12				
PCB 28	FR	F5	DIN 38407-37: 2013-11	0,001	μg/l	n.n. ²⁾	
PCB 52	FR	F5	DIN 38407-37: 2013-11	0,001	μg/l	n.n. ²⁾	
PCB 101	FR	F5	DIN 38407-37: 2013-11	0,001	μg/l	n.n. ²⁾	
PCB 153	FR	F5	DIN 38407-37: 2013-11	0,001	μg/l	n.n. ²⁾	
PCB 138	FR	F5	DIN 38407-37: 2013-11	0,001	μg/l	n.n. ²⁾	
PCB 180	FR	F5	DIN 38407-37: 2013-11	0,001	μg/l	n.n. ²⁾	
Summe 6 PCB nach EBV: 2021	FR		berechnet		μg/l	(n. b.) ³⁾	
PCB 118	FR	F5	DIN 38407-37: 2013-11	0,001	μg/l	n.n. ²⁾	
Summe 7 PCB nach EBV: 2021	FR		berechnet		μg/l	(n. b.) ³⁾	

Erläuterungen

BG - Bestimmungsgrenze

Lab. - Kürzel des durchführenden Labors

Akkr. - Akkreditierungskürzel des Prüflabors

Kommentare zu Ergebnissen

- ¹⁾ Die Gleichwertigkeit zu DIN EN 13657: 2003-01 ist nachgewiesen. DIN EN ISO 54321:2021-04 wird als Referenzverfahren in der Methodensammlung FBU/LAGA Version 2.0 Stand 15.06.2021 ausdrücklich empfohlen. Zur Gleichwertigkeit von Aufschlussverfahren siehe für EBV: FAQ des LfU Bayern; für BBodSchV: §24.11.
- ²⁾ nicht nachweisbar
- 3) nicht berechenbar

Die mit FR gekennzeichneten Parameter wurden von der Eurofins Umwelt Ost GmbH (Lindenstraße 11, Gewerbegebiet Freiberg Ost, Bobritzsch-Hilbersdorf) analysiert. Die Bestimmung der mit F5 gekennzeichneten Parameter ist nach DIN EN ISO/IEC 17025:2018 DAkkS D-PL-14081-01-00 akkreditiert.

Probenbegleitprotokoll nach DIN 19747 - Juli 2009 - Anhang A

Probennummer 123143863

Probenbeschreibung Bod 3 (LAGA) + Bod 7 (EBV), (3/6a/b)

Probenvorbereitung

Probenehmer keine Angabe,

Probe(n) wurde(n) an

das Labor ausgehändigt

Probenahmeprotokoll (von der Feldprobe zur Laborprobe) liegt vor:

Nein

Fremdstoffe (Menge): 0,0 g
Fremdstoffe (Anteil): < 0,1 %
Fremdstoffe (Art): nein
Siebrückstand > 10mm: ja

Siebrückstand wird auf < 10mm zerkleinert und dem Siebdurchgang beigemischt.

Probenteilung / Homogenisierung durch: Fraktionierendes Teilen

Rückstellprobe: 1270 g

Probenaufarbeitung (von der Prüfprobe zur Messprobe) ****)

Nr.	DK0	DKI, II, III	REK	Parameter	Zerkleinern **)	Trocknen	Feinzerkleinern ***)	Probenmenge
0	Х	Х	Х	Trockenmasse	< 5 mm	Nein	Nein	15 g
1.01	Х	Х		Glühverlust	< 5 mm	40 °C	< 150 µm	10 g
1.02	Х	Х		TOC	< 5 mm	40 °C	< 150 µm	2 g
2.01	Х			BTEX	Originalprobe (Stichprobe)	Nein	Nein	20 g + 20 ml Methanol
2.02 + 2.04	Х		Х	PAK/PCB	< 5 mm	Nein	Nein	12,5 g
2.03	Х			MKW (C10 - C40)	< 5 mm	Nein	Nein	20 g
2.07	Х	Х		Lipophile Stoffe	< 5 mm	Verreiben mit Natriumsulfat	Nein	20 g
2.08 - 2.14			X	Metalle, Königswasser- aufschluss	< 5 mm	40 °C	< 150 μm	3 g
3.01 - 3.21	Х	Х	Х	Eluat	Nein/ < 10 mm	Nein	Nein	100 g
1.01/1.02 *)	Х	Х		C-elementar	< 5 mm	40 °C	< 150 µm	2 g
1.01/1.02 *)	Х	Х		AT4	< 10 mm	Nein	Nein	300 g
1.01/1.02 *)	Х	Х		GB21	< 10 mm	Nein	Nein	200 g
1.01/1.02 *)	X	Х		Brennwert	< 5 mm	105 °C	< 150 µm	5 g

Die Ergebnisse beziehen sich auf das sortenreine Prüfprobenmaterial nach Entfernung der Fremdmaterialien gemäß DIN 19747:2009-07.

*) Zusatzparameter bei Überschreitung der genannten Grenzwerte

**) Zerkleinern mittels Backenbrecher mit Wolframkarbid-Backen

***) Feinzerkleinerung mittels Laborbackenbrecher BB51 mit Wolframkarbid-Backen

****) Maximalumfang; gilt nur für die beauftragten Parameter

Seite 1 von 7

Eurofins Umwelt Ost GmbH - Lindenstraße 11 - Gewerbegebiet Freiberg Ost - D-09627 Bobritzsch-Hilbersdorf

Ingenieurbüro ECKERT GmbH Crusiusstraße 7 09120 Chemnitz

Titel: Prüfbericht zu Auftrag 12340753

Prüfberichtsnummer: AR-23-FR-048009-01

Auftragsbezeichnung: Reg.-Nr.: 08371-118, Proj.-Nr.: 16788/4013

Anzahl Proben: 1

Probenart: Boden

Probenehmer: keine Angabe, Probe(n) wurde(n) an das Labor ausgehändigt

Probeneingangsdatum: 13.09.2023

Prüfzeitraum: 13.09.2023 - 16.10.2023

Die Prüfergebnisse beziehen sich ausschließlich auf die untersuchten Prüfgegenstände. Sofern die Probenahme nicht durch unser Labor oder in unserem Auftrag erfolgte, wird hierfür keine Gewähr übernommen. Dieser Prüfbericht enthält eine qualifizierte elektronische Signatur und darf nur vollständig und unverändert weiterverbreitet werden. Auszüge oder Änderungen bedürfen in jedem Einzelfall der Genehmigung der EUROFINS UMWELT.

Es gelten die Allgemeinen Verkaufsbedingungen (AVB), sofern nicht andere Regelungen vereinbart sind. Die aktuellen AVB können Sie unter http://www.eurofins.de/umwelt/avb.aspx einsehen.

Das beauftragte Prüflaboratorium ist durch die DAkkS nach DIN EN ISO/IEC 17025:2018 DAkkS akkreditiert. Die Akkreditierung gilt nur für den in der Urkundenanlage (D-PL-14081-01-00) aufgeführten Umfang.

Anhänge:

XML_Export_AR-23-FR-048009-01.xml

Mario Thielemann Prüfleitung (Chemnitz)

+49 371 3343560

Digital signiert, 16.10.2023 Mario Thielemann Prüfleitung (Chemnitz)

				Probenbez	eichnung	Bod 4 (LAGA) + Bod 8 (EBV)
				Probennun	nmer	123145529
Parameter	Lab.	Akkr.	Methode	BG	Einheit	
Probenvorbereitung Fests	toffe					
Fraktion < 2 mm	FR	F5	DIN 19747: 2009-07	0,1	%	46,7
Fraktion > 2 mm	FR	F5	DIN 19747: 2009-07	0,1	%	53,3
Königswasseraufschluss (angewandte Methode)	FR	F5	L8:DIN EN 13657:2003-01;F5:DIN EN ISO 54321:2021-4			mittels thermoregu- lierbarem Graphitblock
Probenmenge inkl. Verpackung	FR	F5	DIN 19747: 2009-07		kg	12,2
Fremdstoffe (Art)	FR	F5	DIN 19747: 2009-07			nein
Fremdstoffe (Menge)	FR	F5	DIN 19747: 2009-07		g	0,0
Siebrückstand > 10mm	FR	F5	DIN 19747: 2009-07			ja
Fremdstoffe (Anteil)	FR	F5	DIN 19747: 2009-07	0,1	%	< 0,1
Probenvorbereitung aus d	ler Origi	nalsuk	stanz (Fraktion < 2	mm)	<u>'</u>	•
Königswasseraufschluss (angewandte Methode)	FR	F5	L8:DIN EN 13657:2003-01;F5:DIN EN ISO 54321:2021-4			thermoregu- lierbarem Graphitblock
Physikalisch-chemische k	(enngrö	ßen au	ıs der Originalsubs	tanz	_	
Trockenmasse	FR	F5	DIN EN 14346: 2007-03	0,1	Ma%	88,2
Aussehen (qualitativ)	FR	F5	DIN EN ISO 14688-1: 2018-05			Boden ohne Fremdbe- standteile
Farbe qualit.	FR	F5	DIN EN ISO 14688-1: 2018-05			braun
Geruch (qualitativ)	FR	F5	DIN EN ISO 14688-1: 2018-05			ohne
Elemente aus dem Königs	wasser	aufsch	luss			
Arsen (As)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,8	mg/kg TS	14,6
Blei (Pb)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	2	mg/kg TS	16
Cadmium (Cd)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,2	mg/kg TS	< 0,2
Chrom (Cr)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	1	mg/kg TS	31
Kupfer (Cu)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	1	mg/kg TS	17
Nickel (Ni)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	1	mg/kg TS	22
Quecksilber (Hg)	FR	F5	DIN EN ISO 12846 (E12): 2012-08	0,07	mg/kg TS	< 0,07
Zink (Zn)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	1	mg/kg TS	54

				Probenbezei	chnung	Bod 4
						(LAGA) + Bod 8 (EBV)
				Probennumn	nor	123145529
Parameter	Lab.	Δkkr	Methode	BG	Einheit	123143329
Elemente aus dem Königsw				_	Lillion	
Arsen (As)	FR	F5	DIN EN 16171:2017-01	0,8	mg/kg TS	17,4
Blei (Pb)	FR	F5	DIN EN 16171:2017-01	2	mg/kg TS	17
Cadmium (Cd)	FR	F5	DIN EN 16171:2017-01	0,2	mg/kg TS	< 0,2
Chrom (Cr)	FR	F5	DIN EN 16171:2017-01	1	mg/kg TS	35
Kupfer (Cu)	FR	F5	DIN EN 16171:2017-01	1	mg/kg TS	18
Nickel (Ni)	FR	F5	DIN EN 16171:2017-01	1	mg/kg TS	27
Quecksilber (Hg)	FR	F5	DIN EN 16171:2017-01	0.07	mg/kg TS	< 0.07
Thallium (TI)	FR	F5	DIN EN 16171:2017-01	0,2	mg/kg TS	0,3
Zink (Zn)	FR	F5	DIN EN 16171:2017-01	1	mg/kg TS	58
Organische Summenparame	tor au	e dor	Originaleubetanz		3 3	
Organische Summenparame	ler at	ls dei	DIN EN 15936: 2012-11			
TOC	FR	F5	(AN,L8: Ver.A; FG,F5: Ver.B)	0,1	Ma% TS	0,1
EOX	FR	F5	DIN 38414-17 (S17): 2017-01	1,0	mg/kg TS	< 1,0
Kohlenwasserstoffe C10-C22	FR	F5	DIN EN 14039: 2005-01/LAGA KW/04: 2019-09	40	mg/kg TS	< 40
Kohlenwasserstoffe C10-C40	FR	F5	DIN EN 14039: 2005-01/LAGA KW/04: 2019-09	40	mg/kg TS	< 40
Organische Summenparame	eter au	ıs der	Originalsubstanz (F	raktion < 2 m	ım)	
TOC	FR	F5	DIN EN 15936: 2012-11	0,1	Ma% TS	0,1
EOX	FR	F5	DIN 38414-17 (S17): 2017-01	1,0	mg/kg TS	< 1,0
Kohlenwasserstoffe C10-C22	FR	F5	DIN EN 14039: 2005-01	40	mg/kg TS	< 40
Kohlenwasserstoffe C10-C40	FR	F5	DIN EN 14039: 2005-01	40	mg/kg TS	< 40
PAK aus der Originalsubsta	nz					
Naphthalin	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Acenaphthylen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Acenaphthen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Fluoren	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Phenanthren	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Anthracen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Fluoranthen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Pyren	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Benzo[a]anthracen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Chrysen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Benzo[b]fluoranthen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Benzo[k]fluoranthen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Benzo[a]pyren	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05
Indeno[1,2,3-cd]pyren	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Dibenzo[a,h]anthracen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Benzo[ghi]perylen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Summe 16 EPA-PAK exkl. BG	FR	F5	DIN ISO 18287: 2006-05		mg/kg TS	(n. b.) ³⁾
Summe 15 PAK ohne Naphthalin exkl. BG	FR	F5	DIN ISO 18287: 2006-05		mg/kg TS	(n. b.) ³⁾

				Probenbezeichnung		Bod 4 (LAGA) + Bod 8 (EBV)
	_			Probennumn	ner	123145529
Parameter			Methode	BG	Einheit	
PAK aus der Originalsubsta	nz (Fr	aktion	< 2 mm)			
Naphthalin	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Acenaphthylen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Acenaphthen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Fluoren	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Phenanthren	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05
Anthracen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Fluoranthen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05
Pyren	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05
Benzo[a]anthracen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Chrysen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Benzo[b]fluoranthen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Benzo[k]fluoranthen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Benzo[a]pyren	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05
Indeno[1,2,3-cd]pyren	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Dibenzo[a,h]anthracen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Benzo[ghi]perylen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾
Summe 16 PAK nach EBV: 2021	FR		berechnet		mg/kg TS	0,100
Summe 15 PAK ohne Naphthalin nach EBV: 2021	FR		berechnet		mg/kg TS	0,100
PCB aus der Originalsubsta	nz (Fr	aktion	< 2 mm)			
PCB 28	FR	F5	DIN EN 17322: 2021-03	0,01	mg/kg TS	n.n. ²⁾
PCB 52	FR	F5	DIN EN 17322: 2021-03	0,01	mg/kg TS	n.n. ²⁾
PCB 101	FR	F5	DIN EN 17322: 2021-03	0,01	mg/kg TS	< 0,01
PCB 153	FR	F5	DIN EN 17322: 2021-03	0,01	mg/kg TS	< 0,01
PCB 138	FR	F5	DIN EN 17322: 2021-03	0,01	mg/kg TS	n.n. ²⁾
PCB 180	FR	F5	DIN EN 17322: 2021-03	0,01	mg/kg TS	n.n. ²⁾
Summe 6 DIN-PCB nach EBV: 2021	FR		berechnet		mg/kg TS	0,010
PCB 118	FR	F5	DIN EN 17322: 2021-03	0,01	mg/kg TS	n.n. ²⁾
Summe PCB (7) nach EBV: 2021	FR		berechnet		mg/kg TS	0,010
Kenngr. d. Eluatherst. f. org	., nich	t-flüch	t. Par. nach DIN 19	529: 2015-12		
Trübung im Eluat nach DIN EN ISO 7027: 2000-04	FR	F5		10	FNU	13
Physchem. Kenngrößen au	ıs den	10:1-	Schütteleluat nach	DIN EN 1245	7-4: 2003-01	
pH-Wert	FR	F5	DIN EN ISO 10523 (C5): 2012-04			7,3
Temperatur pH-Wert	FR	F5	DIN 38404-4 (C4): 1976-12		°C	12,8
Leitfähigkeit bei 25°C	FR	F5	DIN EN 27888 (C8): 1993-11	5	μS/cm	108
Physikalisch-chem. Kenngr	ößen a	us de	m 2:1-Schütteleluat	nach DIN 19	529: 2015-12	
pH-Wert	FR	F5	DIN EN ISO 10523 (C5): 2012-04			7,3
Temperatur pH-Wert	FR	F5	DIN 38404-4 (C4): 1976-12		°C	15,6
Leitfähigkeit bei 25°C	FR	F5	DIN EN 27888 (C8): 1993-11	5	μS/cm	492

				Probenbezei	chnung	Bod 4 (LAGA) + Bod 8 (EBV)
				Probennumn	ner	123145529
Parameter	Lab.	Akkr.	Methode	BG	Einheit	
Anionen aus dem 10:1-9	Schüttelelı	uat nac	h DIN EN 12457-4:	2003-01		
Chlorid (CI)	FR	F5	DIN EN ISO 10304-1 (D20): 2009-07	1,0	mg/l	16
Sulfat (SO4)	FR	F5	DIN EN ISO 10304-1 (D20): 2009-07	1,0	mg/l	15
Anionen aus dem 2:1-So	chüttelelu	at nacl	n DIN 19529: 2015-1	2		
Sulfat (SO4)	FR	F5	DIN EN ISO 10304-1 (D20): 2009-07	1,0	mg/l	75
Elemente aus dem 10:1-	Schüttele	luat na	ch DIN EN 12457-4	: 2003-01		
Arsen (As)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	< 0,001
Blei (Pb)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	< 0,001
Cadmium (Cd)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,0003	mg/l	< 0,0003
Chrom (Cr)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	< 0,001
Kupfer (Cu)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,005	mg/l	< 0,005
Nickel (Ni)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	< 0,001
Quecksilber (Hg)	FR	F5	DIN EN ISO 12846 (E12): 2012-08	0,0002	mg/l	< 0,0002
Zink (Zn)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,01	mg/l	< 0,01
Elemente aus dem 2:1-9	Schüttelelı	uat nac	h DIN 19529: 2015-	12		
Arsen (As)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	< 0,001
Blei (Pb)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	< 0,001
Cadmium (Cd)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,0003	mg/l	< 0,0003
Chrom (Cr)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	< 0,001
Kupfer (Cu)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	< 0,001
Nickel (Ni)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	< 0,001
Quecksilber (Hg)	FR	F5	DIN EN ISO 12846 (E12): 2012-08	0,0001	mg/l	< 0,0001
Thallium (TI)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,0002	mg/l	< 0,0002
Zink (Zn)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,01	mg/l	< 0,01

				Probenbezei	chnung	Bod 4 (LAGA) + Bod 8 (EBV)
				Probennumr	ner	123145529
Parameter	Lab.	Akkr.	Methode	BG	Einheit	
PAK aus dem 2:1-Schüttele	luat na	ch DII	N 19529: 2015-12			
Naphthalin	FR	F5	DIN 38407-39 (F39): 2011-09	0,05	μg/l	n.n. ²⁾
Acenaphthylen	FR	F5	DIN 38407-39 (F39): 2011-09	0,03	μg/l	n.n. ²⁾
Acenaphthen	FR	F5	DIN 38407-39 (F39): 2011-09	0,02	μg/l	< 0,02
Fluoren	FR	F5	DIN 38407-39 (F39): 2011-09	0,01	μg/l	n.n. ²⁾
Phenanthren	FR	F5	DIN 38407-39 (F39): 2011-09	0,02	μg/l	n.n. ²⁾
Anthracen	FR	F5	DIN 38407-39 (F39): 2011-09	0,008	μg/l	n.n. ²⁾
Pyren	FR	F5	DIN 38407-39 (F39): 2011-09	0,01	μg/l	< 0,01
Benzo[a]anthracen	FR	F5	DIN 38407-39 (F39): 2011-09	0,01	μg/l	n.n. ²⁾
Chrysen	FR	F5	DIN 38407-39 (F39): 2011-09	0,01	μg/l	n.n. ²⁾
Benzo[b]fluoranthen	FR	F5	DIN 38407-39 (F39): 2011-09	0,01	μg/l	n.n. ²⁾
Benzo[k]fluoranthen	FR	F5	DIN 38407-39 (F39): 2011-09	0,01	μg/l	n.n. ²⁾
Benzo[a]pyren	FR	F5	DIN 38407-39 (F39): 2011-09	0,008	μg/l	n.n. ²⁾
Indeno[1,2,3-cd]pyren	FR	F5	DIN 38407-39 (F39): 2011-09	0,01	μg/l	n.n. ²⁾
Fluoranthen	FR	F5	DIN 38407-39 (F39): 2011-09	0,02	μg/l	n.n. ²⁾
Dibenzo[a,h]anthracen	FR	F5	DIN 38407-39 (F39): 2011-09	0,008	μg/l	n.n. ²⁾
Benzo[ghi]perylen	FR	F5	DIN 38407-39 (F39): 2011-09	0,01	μg/l	n.n. ²⁾
Summe 16 PAK nach EBV: 2021	FR		berechnet		μg/l	0,015
Summe 15 PAK ohne Naphthalin nach EBV: 2021	FR		berechnet		μg/l	0,015
1-Methylnaphthalin	FR	F5	DIN 38407-39 (F39): 2011-09	0,01	μg/l	n.n. ²⁾
2-Methylnaphthalin	FR	F5	DIN 38407-39 (F39): 2011-09	0,01	μg/l	n.n. ²⁾
Summe Methylnaphthaline nach EBV: 2021	FR		berechnet		μg/l	(n. b.) ³⁾
Summe Methylnaphthaline + Naphthalin nach EBV: 2021	FR		berechnet		μg/l	(n. b.) ³⁾
PCB aus dem 2:1-Schüttele	luat na	ch Di	N 19529: 2015-12			
PCB 28	FR	F5	DIN 38407-37: 2013-11	0,001	μg/l	n.n. ²⁾
PCB 52	FR	F5	DIN 38407-37: 2013-11	0,001	μg/l	n.n. ²⁾
PCB 101	FR	F5	DIN 38407-37: 2013-11	0,001	μg/l	n.n. ²⁾
PCB 153	FR	F5	DIN 38407-37: 2013-11	0,001	μg/l	n.n. ²⁾
PCB 138	FR	F5	DIN 38407-37: 2013-11	0,001	μg/l	n.n. ²⁾
PCB 180	FR	F5	DIN 38407-37: 2013-11	0,001	μg/l	n.n. ²⁾
Summe 6 PCB nach EBV: 2021	FR		berechnet		μg/l	(n. b.) ³⁾
PCB 118	FR	F5	DIN 38407-37: 2013-11	0,001	μg/l	n.n. ²⁾
Summe 7 PCB nach EBV: 2021	FR		berechnet		μg/l	(n. b.) ³⁾

Erläuterungen

BG - Bestimmungsgrenze

Lab. - Kürzel des durchführenden Labors

Akkr. - Akkreditierungskürzel des Prüflabors

Kommentare zu Ergebnissen

- ¹⁾ Die Gleichwertigkeit zu DIN EN 13657: 2003-01 ist nachgewiesen. DIN EN ISO 54321:2021-04 wird als Referenzverfahren in der Methodensammlung FBU/LAGA Version 2.0 Stand 15.06.2021 ausdrücklich empfohlen. Zur Gleichwertigkeit von Aufschlussverfahren siehe für EBV: FAQ des LfU Bayern; für BBodSchV: §24.11.
- ²⁾ nicht nachweisbar
- 3) nicht berechenbar

Die mit FR gekennzeichneten Parameter wurden von der Eurofins Umwelt Ost GmbH (Lindenstraße 11, Gewerbegebiet Freiberg Ost, Bobritzsch-Hilbersdorf) analysiert. Die Bestimmung der mit F5 gekennzeichneten Parameter ist nach DIN EN ISO/IEC 17025:2018 DAkkS D-PL-14081-01-00 akkreditiert.

Auftragnehmer Ingenieurbüro Eckert GmbH

Crusiusstraße 7 09120 Chemnitz

ECKERT

Auftraggeber Große Kreisstadt Glauchau

Markt 1; 08371 Glauchau

WAD GmbH

An der Muldenaue 10; 08373 Remse

Projekt Glauchau, Pestalozzistraße

ENB AW-Kanal + Straßenausbau

08371-118 \ 16788/40139

Hersteller Zorn Instruments 0

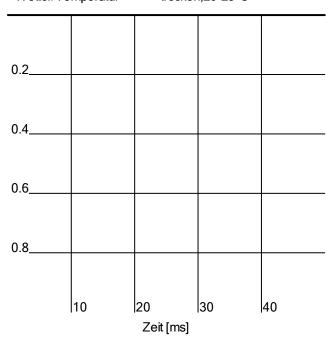
Prüfgerät ZFG 02 Messtyp 300 mm/10 kg

Prüfnummer (Nr) 1

Prüfzeit 11.08.2023 07:53:01 0

Lage des Prüfpunktes 2-A/RKS -0,08 m ungeb. TS Prüfer Schade, Thiele, Göhler

Setzung [mm]


Bodenart grob-/mittelkörnig Schichtdicke

Bodengruppe [GU] Wetter/Temperatur trocken,20-25°C

Stoß	v [mm/s]	s [mm]	
1	215.6	0.609	
2	209.5	0.586	
3	208.1	0.559	
Ø	211.1	0.585	

Ergebnis Evd: 38.48 MN/m²

s/v: 2.770ms

Bemerkungen Gerätenummer:3863

Glauchau, 14.08.2023

Ort, Datum

Thiel

Auftragnehmer Ingenieurbüro Eckert GmbH

Crusiusstraße 7 09120 Chemnitz INGENIEURBÜRO

ECKERT

Auftraggeber Große Kreisstadt Glauchau

Markt 1; 08371 Glauchau

WAD GmbH

An der Muldenaue 10; 08373 Remse

Projekt Glauchau, Pestalozzistraße

ENB AW-Kanal + Straßenausbau

08371-118 \ 16788/40139

Hersteller Zorn Instruments 0

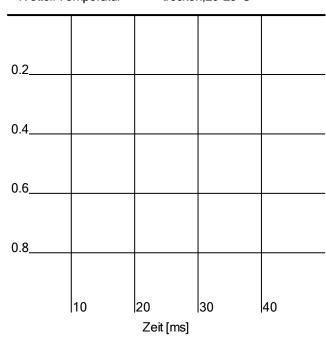
Prüfgerät ZFG 02 Messtyp 300 mm/10 kg

Prüfnummer (Nr) 2

Prüfzeit 11.08.2023 08:14:01 0

Lage des Prüfpunktes 2-A/RKS -0,60 m OK Planum Prüfer Schade,Thiele,Göhler

Setzung [mm]


Bodenart grob-/mittelkörnig Schichtdicke

Bodengruppe [GU] Wetter/Temperatur trocken,20-25°C

Stoß	v [mm/s]	s [mm]	
1	214.7	0.698	
2	213.5	0.657	
3	210.1	0.663	
Ø	212.8	0.673	

Ergebnis Evd: 33.44 MN/m²

s/v: 3.162ms

Bemerkungen Gerätenummer:3863

Glauchau, 14.08.2023

Ort, Datum

Thick

Auftragnehmer Ingenieurbüro Eckert GmbH

Crusiusstraße 7 09120 Chemnitz

ECKERT

Auftraggeber Große Kreisstadt Glauchau

Markt 1; 08371 Glauchau

WAD GmbH

An der Muldenaue 10; 08373 Remse

Projekt Glauchau, Pestalozzistraße

ENB AW-Kanal + Straßenausbau

08371-118 \ 16788/40139

Hersteller Zorn Instruments 0

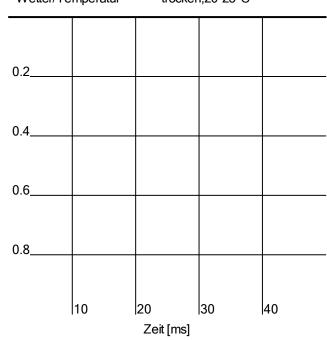
Prüfgerät ZFG 02 Messtyp 300 mm/10 kg

Prüfnummer (Nr) 3

Prüfzeit 11.08.2023 10:28:01 0

Lage des Prüfpunktes 4-A/RKS -0,25 m ungeb. TS Prüfer Schade, Thiele, Göhler

Setzung [mm]


Bodenart grob-/mittelkörnig Schichtdicke

Bodengruppe [--] Wetter/Temperatur trocken,20-25°C

Stoß	v [mm/s]	s [mm]	
1	127.1	0.410	
2	121.6	0.369	
3	121.7	0.358	
Ø	123.5	0.379	

Ergebnis Evd: 59.36 MN/m²

s/v: 3.070ms

Bemerkungen Gerätenummer:3863

Glauchau, 14.08.2023

Ort, Datum

Thick

Auftragnehmer Ingenieurbüro Eckert GmbH

Crusiusstraße 7 09120 Chemnitz

Auftraggeber

Große Kreisstadt Glauchau
Markt 1; 08371 Glauchau

ECKERT

WAD GmbH

An der Muldenaue 10; 08373 Remse

Projekt Glauchau, Pestalozzistraße

ENB AW-Kanal + Straßenausbau

08371-118 \ 16788/40139

Hersteller Zorn Instruments 0

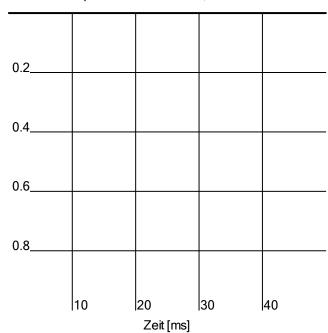
Prüfgerät ZFG 02 Messtyp 300 mm/10 kg

Prüfnummer (Nr) 4

Prüfzeit 11.08.2023 10:52:01 0

Lage des Prüfpunktes 4-A/RKS -0,50 m OK Planum Prüfer Schade,Thiele,Göhler

Bodenart feinkörnig Schichtdicke


Bodengruppe [TL] Wetter/Temperatur trocken,20-25°C

Stoß	v [mm/s]	s [mm]	
1	357.3	1.700	
2	351.0	1.600	
3	367.0	1.696	
Ø	358.4	1.665	

Setzung [mm]

Ergebnis Evd: 13.51 MN/m²

s/v: 4.646ms

Bemerkungen Gerätenummer:3863

Glauchau, 14.08.2023

Ort, Datum

Thick

Ingenieurbüro Eckert GmbH Auftragnehmer

> Crusiusstraße 7 09120 Chemnitz

Große Kreisstadt Glauchau Auftraggeber

Markt 1; 08371 Glauchau

WAD GmbH

An der Muldenaue 10; 08373 Remse

Projekt Glauchau, Pestalozzistraße

ENB AW-Kanal + Straßenausbau

08371-118 \ 16788/40139

0 Hersteller Zorn Instruments

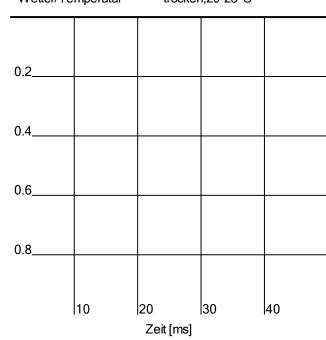
Prüfgerät **ZFG 02** Messtyp 300 mm/10 kg

Prüfnummer (Nr) 5

14.08.2023 08:34:01 0 Prüfzeit

Lage des Prüfpunktes 5-A/RKS -0,19 m ungeb. TS Prüfer Schade, Thiele, Göhler

Setzung [mm]


Bodenart grob-/mittelkörnig Schichtdicke

Bodengruppe [--] Wetter/Temperatur trocken,20-25°C

Stoß	v [mm/s]	s [mm]	
1	163.1	0.469	
2	160.0	0.445	
3	154.3	0.407	
Ø	159.1	0.440	

Ergebnis Evd: 51.09 MN/m²

s/v: 2.767ms

Bemerkungen Gerätenummer:3863

Glauchau, 14.08.2023

Ort, Datum

Auftragnehmer Ingenieurbüro Eckert GmbH

Crusiusstraße 7 09120 Chemnitz INGENIEURBÜRO

ECKERT

Auftraggeber Große Kreisstadt Glauchau

Markt 1; 08371 Glauchau

WAD GmbH

An der Muldenaue 10; 08373 Remse

Projekt Glauchau, Pestalozzistraße

ENB AW-Kanal + Straßenausbau

08371-118 \ 16788/40139

Hersteller Zorn Instruments 0

Prüfgerät ZFG 02 Messtyp 300 mm/10 kg

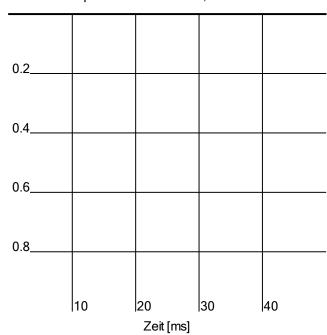
Prüfnummer (Nr) 6

Prüfzeit 14.08.2023 08:55:01 0

Lage des Prüfpunktes 5-A/RKS -0,60 m OK Planum Prüfer Schade,Thiele,Göhler

Setzung [mm]

Schichtdicke


Bodenart feinkörnig

Bodengruppe TL - ST* Wetter/Temperatur trocken,20-25°C

Stoß	v [mm/s]	s [mm]	
1	378.9	1.500	
2	373.1	1.490	
3	368.7	1.448	
Ø	373.6	1.479	

Ergebnis Evd: 15.20 MN/m²

s/v: 3.960ms

Bemerkungen Gerätenummer:3863

Glauchau, 14.08.2023

Ort, Datum

Thiel

Aufbruch und Rammkernsondierung (A/RKS) 1 – Ansatzpunkt

Aufbruch und Rammkernsondierung (A/RKS) 1 – Ansatzpunkt

Aufbruch und Rammkernsondierung (A/RKS) 1 – Innenansicht Aufbruch

Aufbruch und Rammkernsondierung (A/RKS) 1 – Ansicht Aufbruchmaterial

Aufbruch und Rammkernsondierung (A/RKS) 2 - Ansatzpunkt

Aufbruch und Rammkernsondierung (A/RKS) 2 – Ansatzpunkt

Aufbruch und Rammkernsondierung (A/RKS) 2 – Innenansicht Aufbruch

Aufbruch und Rammkernsondierung (A/RKS) 2 – Ansicht Aufbruchmaterial

Aufbruch und Rammkernsondierung (A/RKS) 3 - Ansatzpunkt

Aufbruch und Rammkernsondierung (A/RKS) 3 – Ansatzpunkt

Aufbruch und Rammkernsondierung (A/RKS) 3 – Innenansicht Aufbruch

Aufbruch und Rammkernsondierung (A/RKS) 3 – Ansicht Aufbruchmaterial

Aufbruch und Rammkernsondierung (A/RKS) 4 - Ansatzpunkt

Aufbruch und Rammkernsondierung (A/RKS) 4 – Ansatzpunkt

Aufbruch und Rammkernsondierung (A/RKS) 4 - Innenansicht Aufbruch

Aufbruch und Rammkernsondierung (A/RKS) 4 – Ansicht Aufbruchmaterial

Aufbruch und Rammkernsondierung (A/RKS) 5 – Ansatzpunkt

Aufbruch und Rammkernsondierung (A/RKS) 5 – Ansatzpunkt

Aufbruch und Rammkernsondierung (A/RKS) 5 - Innenansicht Aufbruch

Aufbruch und Rammkernsondierung (A/RKS) 5 – Ansicht Aufbruchmaterial

Aufbruch und Rammkernsondierung (A/RKS) 6 – Ansatzpunkt

Aufbruch und Rammkernsondierung (A/RKS) 6 - Ansatzpunkt

Aufbruch und Rammkernsondierung (A/RKS) 6 - Innenansicht Aufbruch

Aufbruch und Rammkernsondierung (A/RKS) 6 – Ansicht Aufbruchmaterial

Höhenbezugspunkt HP1 – 289,131 m

Höhenbezugspunkt HP2 – 289,209 m

Höhenbezugspunkt HP3 – 289,092 m

Höhenbezugspunkt HP4 – 287,380 m

Höhenbezugspunkt HP5 – 285,780 m

Höhenbezugspunkt HP6 – 283,860 m