
Display Hardware API
Version 1.4

1/12

Version Release Date Changes

v1.4 12.11.2024 Add CORS preflight requirement

v1.3 15.10.2024 Make uptime_seconds mandatory, removed alarm active_since,
improve alarm categories

v1.2 06.09.2024 Reworked API: device-info, system-status, alarms and button-events

v1.1 15.02.2024 Add read-aloud subsystem health indicator (SystemHealth tts-
problem-detected)

v1.0 14.09.2023 Initial Specification

2/12

Contents
1. Introduction .. 4

1.1. Goals ... 4
1.2. Abbreviations ... 4
1.3. License .. 4

2. General ... 5
2.1. JSON return values ... 5
2.2. Status Codes ... 5

2.2.1. Success Codes .. 5
2.2.2. Failure Codes ... 5

2.3. Server response times ... 5
2.4. Network Topology and Security ... 6

2.4.1. CORS preflight request ... 6
2.5. Optional Endpoints and Fields .. 6

3. API endpoints ... 7
3.1. GET /device-info .. 7
3.2. GET /system-status .. 7
3.3. GET /alarms .. 8
3.4. GET /buttons/event-counts ... 10
3.5. POST /system-reset ... 10
3.6. POST /screens/state .. 10
3.7. GET /watchdog/config ... 11
3.8. POST /watchdog/keepalive .. 12

3/12

1. Introduction
The Display Hardware API defines a standardized interface enabling access to hardware-specific
functionalities for applications operating on passenger information displays. This API simplifies
the process for hardware manufacturers to implement this access, while ensuring that the
software deployed on the display remains independent from specific drivers, access patterns, or
operating system APIs. The Display Hardware API is an HTTP REST API defined using the
OpenAPI framework.

1.1. Goals
1. Access to Hardware Functionality: The primary goal of the Display Hardware API is to offer a

structured means for software applications to interact with hardware-specific functionalities.
By providing a consistent and standardized interface, the API enables developers to leverage
display hardware capabilities seamlessly.

2. Simplified Integration: For hardware manufacturers, the API presents a straightforward
integration process. The API’s design minimizes complexities, reducing the effort required to
incorporate hardware-specific features into the passenger information display system.

3. Software-Hardware Decoupling: The Display Hardware API facilitates separation between
software and hardware components. This decoupling eliminates the necessity for software to
be intricately linked to proprietary drivers, access methods, or operating system APIs.

1.2. Abbreviations

Abbreviation Description

PID Passenger Information Display

HTTP HyperText Transfer Protocol

API Application Programming Interface

JSON JavaScript Object Notation

REST Representational State Transfer

TTS Text-to-Speech

URL Uniform Resource Locator

UTF-8 Unicode Transformation Format 8-bit

1.3. License
The use of this document and the implementation of the specified API is permitted for
commercial and non-commercial applications, for both server- and client-side.

4/12

2. General
The API design is based on OpenAPI Specification 3.1.0. In addition to this document, a formal
protocol schema and description is provided in an openapi.yaml file.

2.1. JSON return values
All values accepted and returned by API methods must be in JSON format. JSON text content
must be UTF-8 encoded.

For simplicity of implementation and further compatibility, no other formats are supported.

2.2. Status Codes
API uses HTTP status codes to convey results of client’s request.

2.2.1. Success Codes

Code Description

200 (ok) Successfully processed the request

2.2.2. Failure Codes

Code Description

404 (Not Found) Invalid endpoint or object not found; Applicable for all unknown
path requests

500 (Internal Server Error) The server encountered an unexpected condition that prevented it
from fulfilling the request

501 (Not Implemented) The endpoint is not supported

503 (Service Unavailable) The endpoint is supported, but currently not available

Note: 404 and 501 differ in meaning. 501 states device does not implement a function and when
such is not defined as obligatory then it is not an error. 404 states an error.

2.3. Server response times
The server implementation and hardware must be able to handle queries at certain rates.
Endpoints such as /buttons/event-counts are expected to be queried often to provide a satisfying
user experience.

endpoint maximum response time (ms)

/system-status 200

/alarms 200

/buttons/event-counts 50

/watchdog/keepalive 50

The server must implement the abovementioned endpoints so that they can be queried
concurrently. Specifically, a request to the /system-status endpoint must not stall the request to
the /buttons/event-counts endpoint.

5/12

https://spec.openapis.org/oas/latest.html

2.4. Network Topology and Security
The Device Hardware API by its nature shall run locally the display computer and be accessible
only from within the boundaries of the local host.

Because of its simplicity and intended ease of implementation, it does not employ any additional
security measures. The API server is forced to only listen on localhost and the firewall must not
have that port open for external connections.

API must be served as an HTTP server and access to it shall not be secured by any security
mechanism as defined in underlying technologies (OpenAPI).

2.4.1. CORS preflight request

The requests to the Display Hardware API server may be coming from a web-browser running on
the same device. Some browsers enforce the use of a CORS preflight request to check if the
server allows answering requests from the web-browser to localhost. For this reason, the server
implementation must answer CORS preflight requests for all endpoints. The mechanism works
as follows:

The client will send an HTTP OPTIONS request with the header Access-Control-Request-
Private-Network: true to the requested endpoint.

HTTP/1.1 OPTIONS /alarms
Origin: https://example.com
Access-Control-Request-Private-Network: true

The server must answer with HTTP 204 (no content) with the header Access-Control-Allow-
Private-Network: true and Access-Control-Allow-Origin set the the Origin of the request.

HTTP/1.1 204 No Content
Access-Control-Allow-Origin: https://example.com
Access-Control-Allow-Private-Network: true
Access-Control-Max-Age: 86400

Afterwards the client will send the actual GET/POST request to the endpoint. Ideally the server
also sets a Access-Control-Max-Age header on the response to the OPTIONS request to allow
the browser to cache the preflight request.

More details:
1. https://developer.chrome.com/blog/private-network-access-preflight
2. https://developer.mozilla.org/en-US/docs/Glossary/Preflight_request

2.5. Optional Endpoints and Fields
The server side is not obliged to implement all endpoints and/or fields specified in this API.
Some endpoints and fields are marked as optional. For requests to optional and unimplemented
endpoints the server shall return HTTP status code 501. Please note that additional project
documents (such as tender documents etc.) may require the implementation of certain or all
optional endpoints and fields.

6/12

https://developer.chrome.com/blog/private-network-access-preflight
https://developer.mozilla.org/en-US/docs/Glossary/Preflight_request

3. API endpoints
Base URL: http://127.0.0.1/display-api/v1/

3.1. GET /device-info
Retrieves general information about the device

Retrieves some general properties of the device that do not change during runtime. The
following fields shall be provided.

Response fields

Name Type Required Description

serial_number string yes A unique identifier for this particular device. This
ID must not be shared with any other display, even
of the same model. It must be persistent across
system reboots, software/firmware updates and
configuration changes.

manufacturer string no Name of the manufacturer of the device.

model_name string no Manufacturer given model name for this kind of
display.

hardware_revision string no The hardware revision id or number of this device.

screen_count integer no Number of screens that this device has. For
example 1 for a single sided display and 2 for a
double sided display.

horizontal_resolution integer no The number of pixels (per screen) that this device
has in the horizontal direction. For example 1920
for a full HD screen

vertical_resolution integer no The number of pixels (per screen) that this device
has in the vertical direction. For example 1080 for
a full HD screen

The implementation of this endpoint is mandatory.

Example response (200 OK)

{
 "serial_number": "a21-b32-03",
 "manufacturer": "display-makers",
 "model_name": "dm-32-full-hd",
 "hardware_revision": "rev4",
 "screen_count": 2,
 "horizontal_resolution": 1920,
 "vertical_resolution": 1080,
}

3.2. GET /system-status
Retrieve system status information

7/12

http://127.0.0.1/display-api/v1/

The system status contains general information about system status and environment. The
system status fields change during runtime, so this endpoint is polled periodically (about once
per minute).

Response fields

Name Type Required Description

uptime_seconds integer yes Number of seconds that the device has been
continuously running (since last restart).

screen_active boolean yes Status of the screens (panels). True if the screens
are active and false if they are currently disabled

internal_temperature integer no Temperature within the housing of the device in
degrees Celsius.

The implementation of this endpoint is mandatory.

Example response (200 OK)

{
 "uptime_seconds": 3645,
 "screen_active": true,
 "internal_temperature": 46,
}

3.3. GET /alarms
Get the currently active alarms of the system.

Returns the currently active alarms of the system. Alarms shall be reported for conditions that
differ from the nominal and expected operating state of the device. An alarm has a category and
a description.

Alarms are only reported while they are active. This means that for every alarm that the device
reports it must have a defined condition under which the alarm becomes inactive and is hence
no longer reported. The device must automatically detect when the alarm state is no longer
present.

For example, if the device can detect an opening of the housing, then an alarm for an open
housing shall only be reported while the housing is actually open. When the housing is closed,
the alarm is no longer reported. Other examples are detection of broken panel or LED modules,
which become inactive as soon as they are fixed and detected to be working again. Another
example is an acoustic glass breakage sensor that is causing an alarm only for the time that the
glass pane is detected to be broken and becomes inactive when the pane is replaced.

This endpoint is designed to be flexible and allow reporting multiple different kinds of alarms
based on the sensors available in different display models. The implementer picks fitting
categories and expressive descriptions for the detectable alarms. The valid categories are listed
in the table below. The alarm descriptions must be in English and understandable by a
technically versed person. No two active alarms shall have the same combination of category
and description.

8/12

The returned object has a single key: active_alarms. The alarms are reported as an array under
that key. Each individual alarm has the following attributes

Name Type Required Description

category string yes Category of the alarm. Must be one of video-output, audio-
output, temperature, water, damage, physical-security, power,
fan, heater, network, self-diagnostics, software, other

description string yes Description of the alarm and its cause

The following table contains examples of useful alarms (non-exaustive):

Category Description

video-output Panel of screen 2 not connected

video-output Broken LEDs detected

audio-output TTS speaker not connected

temperature Internal operating temperature exceeded

temperature Panel temperature high

temperature CPU temperature high

water High humidity detected within housing

water Water detected in housing

damage Glass pane of screen 1 broken

physical-security Housing door 1 is open

power Power fluctuation detected

power Spare power supply failure

power Battery low

power Low power supply voltage

fan Fan not spinning

heater Heater not working

network Network connection unstable

network Low signal strength

self-diagnostics Out of storage space

self-diagnostics No communication with diagnostics controller

self-diagnostics Storage memory wear alarm (S.M.A.R.T.)

software Repeatedly crashing application

other Maintenance inspection overdue

The implementation of this endpoint is mandatory.

Example response (200 OK)

{
 "active_alarms": [
 {
 "category": "housing",

9/12

 "description": "Door 1 is open",
 "active_since": "2024-09-06T14:17:25Z"
 }
]
}

3.4. GET /buttons/event-counts
Get number of times that the different button events have occured since startup.

Returns an object containing the number of times that the different button events have occured
since the start of the system.

Currently there are two event kinds that are supported: tts-short-press and tts-long-press.
The short press event occurs if the user presses the TTS button and releases it after less than 2
seconds. If the user holds the button for more than two seconds, a tts long press event is
counted instead. In contrast to the short press event, the long press event is registered directly
after passing the 2 second threshold, even if the user hasn’t yet released the button.

Response fields

Name Type Required Description

tts_short_press integer no Number of times that the tts button was pressed down
for less than 2 seconds (since start of the server).

tts_long_press integer no Number of times that the tts button was pressed down
for at least 2 seconds (since start of the server).

The server is required to be able to handle at least 10 requests per second to this endpoint
without causing significant system load.

Example response (200 OK)

{
 "tts_short_press": 2,
 "tts_long_press": 3,
}

3.5. POST /system-reset
Request full device restart.

A system reset may be requested in order to recover from certain error states. It is supposed to
reset the hardware and software state of the display, ideally through performing a full power-
cycle of the whole appliance. After the reset, the system must boot again automatically,
restarting all software. This request shall not wipe persistent data or configuration files. At
minimum, requests to this endpoint must result in rebooting the operating system, but projects
are likely to require a more rigorous reset implementation.

The implementation of this endpoint is mandatory.

3.6. POST /screens/state
Request a screens state change.

10/12

Sets the state of the screens of the PID. Currently only contains the field active. When active is
set to false, the server shall turn off or disable the screens. The exact method of disabling the
screens is not prescribed, but the intent is to put the screens in a state where they do not
display content and appear to be off. If technically possible, the screens shall also consume less
power in the inactive/disabled state. For example, for LED screens the implementation may turn
off all LEDs, for TFT screens the implementation may turn off the backlight and output black.
The screen shall remain in this state until another /screens/state request changes the state.

The function is not obligatory.

Request fields

Name Type Required Description

active bool yes True for activating screens, false for disabling them.

Example request body

{
 "active": true
}

3.7. GET /watchdog/config
Returns the watchdog configuration parameters, which are needed for the client to determine a
reasonable keepalive pace. See keepalive endpoint for more details.

The purpose of the watchdog is to allow the system to recover automatically from unforseen
error cases and application crashes. The implementation of the watchdog functionality is
mandatory. It is recommended that the configured timeout is not shorter than 60 seconds.

Response fields

Name Type Required Description

timeout_seconds integer yes Interval in seconds of keepalive messages expected by
the server from the client application. The client must
call the /watchdog/keepalive endpoint at least every
timeout seconds. If the client application fails to do so,
the system service will reset the device.

enabled bool yes True if the watchdog is enabled, false otherwise. The
watchdog shall only be disabled for testing purposes.
On productively deployed displays, the watchdog shall
always be active.

The implementation of this endpoint is mandatory.

Example response (200 OK)

{
 "timeout_seconds": 120,
 "enabled": true,
}

11/12

3.8. POST /watchdog/keepalive
Calms the watchdog

Regular requests to the keepalive endpoint are expected by the server to assure the system is in
a good state. If the server does not receive POST request to /watchdog/keepalive for longer than
the configured timeout, it performas a system reset (as by POST /system-reset).

Implementers note: The watchdog server should consider having a longer timeout for the first
keepalive after system startup, since it will take some additional time for the pinging application
to start and be available.

The implementation of this endpoint is mandatory.

12/12

	Introduction
	Goals
	Abbreviations
	License

	General
	JSON return values
	Status Codes
	Success Codes
	Failure Codes

	Server response times
	Network Topology and Security
	CORS preflight request

	Optional Endpoints and Fields

	API endpoints
	GET /device-info
	GET /system-status
	GET /alarms
	GET /buttons/event-counts
	POST /system-reset
	POST /screens/state
	GET /watchdog/config
	POST /watchdog/keepalive

