Statische Berechnung

Ingenieurbüro für Bauwesen Beratende Ingenieure

Dipl.-Ing. Bernd von Seht Dr.-Ing. Markus Wetzel Dipl.-Ing. Wolfgang Keen Dipl.-Ing. David Fuentes Abolafio Dipl.-Ing. Christian Kühner

Prüfingenieure für Bautechnik VPI

Dipl.-Ing. Bernd von Seht Dr.-Ing. Markus Wetzel Dipl.-Ing. Christian Kühner

Heft 1 – Stahlbau Fortsetzung 2

Leistungsphase 4 - Genehmigungsplanung

Bauvorhaben Israelitisches Krankenhaus Hamburg

- OP Sanierung und Erweiterung

Orchideenstieg 14 22297 Hamburg

Auftraggeber Israelitisches Krankenhaus Hamburg

Orchideenstieg 14 22297 Hamburg

Objektplanung euroterra GmbH

architekten ingenieure

Ness 1

20457 Hamburg

Tragwerksplanung Wetzel & von Seht

Ingenieurbüro für Bauwesen

Friesenweg 5 22763 Hamburg

WvS-Projektnr. 21072

Hamburg 26.06.2023

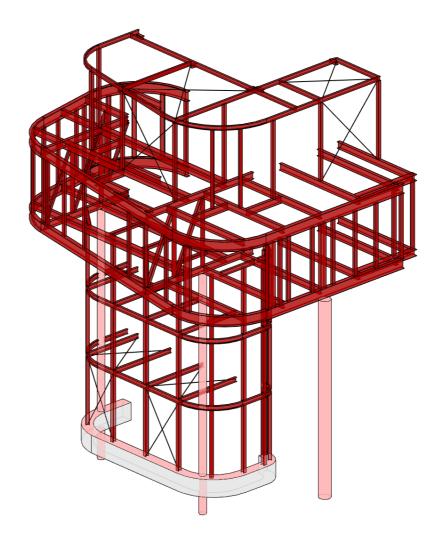
Büro Hamburg

Friesenweg 5E | 22763 Hamburg
Tel +49 (0)40 88 91 67 0
Fax +49 (0)40 88 91 67 67

Büro Berli

info@wvs.eu www.wvs.eu

ISO 9001


Inhaltsverzeichnis

Inhaltsv	verzeichnis	318
1	Vorbemerkungen	319
2	Detailnachweise (Leitdetails)	320
2.1	D18.1 – IPE180 an IPE180 Stahlbauanschluss	321
2.2	D18.2 – IPE180 an IPE180 Stahlbauanschluss	
2.3	D19 – IPE180 auf HEA140 Stahlbauanschluss	325
2.4	D20.1 – HEA140 an IPE180 Stahlbauanschluss	
2.5	D20.2 – HEA140 an IPE180 Stahlbauanschluss	331
2.6	D21.1 – HEA140 an IPE300 Stahlbauanschluss	335
2.7	D21.2 – HEA140 an IPE300 Stahlbauanschluss	337
2.8	D22 - IPE300 an IPE450 Stahlbauanschluss	339
2.9	D23 – IPE300 an IPE300 Stahlbauanschluss	342
2.10	D24 – IPE200 an IPE300 Stahlbauanschluss	346
2.11	D25 – IPE200 an IPE450 Stahlbauanschluss	350
2.12	D26 - IPE300 an HEA300 Stahlbauanschluss	351
2.13	D27 – HEA300 an IPE300 Stahlbauanschluss	355
2.14	D28 D29 D30 D31 – Vierendeelträger Stahlbauanschlüsse	358
2.15	D32 - SHS140x10 - IPE300 - HEA140 Stahlbaufachwerkknoten	359
2.16	D33 – SHS140x10 - IPE300 – IPE140 Stahlbaufachwerkknoten	363
2.17	D34 – IPE450 - IPE180 – IPE300 – HEA140 Stahlbaufachwerkknoten	366
2.18	D35 - IPE450 - IPE180 - IPE300 - IPE140 Stahlbaufachwerkknoten	370
2.19	D36 – SHS140x10 – IPE300 Stahlbaufachwerkknoten	371
2.20	D37 – IPE450 – IPE300 – IPE180 Stahlbaufachwerkknoten	372
2.21	D38 – HEA140 an IPE300 Stahlbauanschluss	373
2.22	D39 - HEA140 an HEA300 Stahlbauanschluss	374
2.23	D40 - HEA160 an HEA140 Stahlbauanschluss	375
2.24	D41.1 – IPE200 an IPE200 Stahlbauanschluss	377
2.25	D41.2 – IPE200 an IPE200 Stahlbauanschluss	380
2.26	D42.1 – HEA160 an IPE200 Stahlbauanschluss	382
2.27	D42.2 – HEA160 an IPE200 Stahlbauanschluss	384
2.28	D42.3 – HEA160 an IPE200 Stahlbauanschluss	386
2.29	D43.1 D43.2 – HEA160 Fußpunkt	388
3	Schlussblatt zur Statischen Berechnung	397

1 Vorbemerkungen

In diesem vorliegenden Heft 1 – Stahlbau Fortsetzung 2 werden die Stahlbaudetails nachgewiesen. Die Nachweise erfolgen mit den maßgebenden Lasten aus den beiden Varianten 1 und 2.

2 Detailnachweise (Leitdetails)

Technikgeschoss

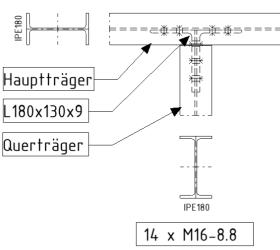
Im Folgenden werden einzelne Knoten und Anschlusspunkte nachgewiesen. Die angegebenen Anschlüsse sind als Leitdetails zu verstehen. Abweichende Ausführungen sind durch den AN gesondert nachzuweisen.

Außerdem sind die Nachweise der Knoten- und Anschlusspunkte, der Montagestöße, der Lagersicherung, der temporären Abstützung sowie die Werkstatt- und Montagepläne (Schraubenverbindung, Schweißnähte etc.) der Stahlkonstruktionen durch den AN zu erbringen und zur bautechnischen Prüfung einzureichen.

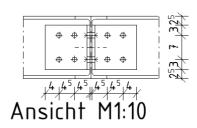
Folgende Anschlusspunkte sind als Leitdetail im Nachfolgenden nachgewiesen:

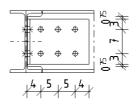
D18.1 D18.2 D19 D20.1 D20.2 D21.1 D21.2 **Erweiterung OP** D22 D23 D24 D25 D26 D27 Vierendeelträger D28 D29 D30 D31 **Fachwerke** D32 D33 D34 D35 D36 D37 Konstruktion im EG-2.OG D38 D39 D40 D41.1 D41.2 D42.1 D42.2 D42.3 D43.1

D43.2



2.1 D18.1 - IPE180 an IPE180 Stahlbauanschluss


2.1.1 Statisches System


D18.1 IPE180 an IPE180 Stahlbauanschluss

Draufsicht M1:10

Ansicht M1:10

2.1.2 Maßgebende Belastung

Variante 1 inkl. Erweiterung 2.OG

Normalkraft (Zug)	$N_{x,Ed}$	=	12,9 kN
Querkraft	$V_{z,Ed}$	=	33,2 kN
Moment	$M_{v,Ed}$	=	13,4 kN

Querträger Resultierende Querkräfte in den Einzelschrauben

	Querkraft		Zugkraft
Schraube 1	46,2	kN	-
Schraube 2	43,4	kN	-
Schraube 3	31,0	kN	-
Schraube 4	26,7	kN	-
Schraube 5	55,2	kN	-
Schraube 6	52,9	kN	-

Hauptträger Resultierende Querkräfte und Zugkräfte in den Einzelschrauben

	Querkraft		Zugkraft	
Schraube 1	4,3	kN	-48,4	kΝ
Schraube 2	4,3	kN	51,7	kΝ
Schraube 3	4,3	kN	-48,4	kΝ
Schraube 4	4,3	kN	51,7	kΝ
Schraube 5	4,3	kN	-48,4	kΝ
Schraube 6	4,3	kN	51,7	kΝ

Schraube 7 4,3 kN -48,4 kN Schraube 8 4,3 kN 51,7 kN

2.1.3 Schnittgrößen und Bemessung Querträger

Maßgebende Geometrie Platte:

Randabstände Platte: $e_1 = 40 \text{ mm}$ Plattendicke: t = 9 mmRandabstände Steg: $e_1 = 37,5 \text{ mm}$ Stegdicke IPE180: t = 5,3 mm

Bemessungswiderstände der Schrauben (M16 - 8.8):

Grenzabscherkraft je Scherfuge: $F_{v,Rd} = 60,3 \text{ kN}$

Grenzlochleibungskraft je Schraube in Steg (S355): 1,361 x (74,67 +85,33)/2 kN x 5,3 / 10 = F_{b,Rd} = 57,7 kN

Grenzlochleibungskraft je Schraube in Platte (S355): $1,361 \times 85,33 \times 9 / 10 = F_{b,Rd} = 104,5 \times N$

Nachweise der Schraubenverbindung:

Lochleibung: $F_{v,Ed} = 55,2 \text{ kN} < F_{b,Rd} = 57,7 \text{ kN}$ Abscheren der Schraube: $F_{v,Ed} = 55,2 \text{ kN} < F_{v,Rd} = 60,3 \text{ kN}$

2.1.4 Schnittgrößen und Bemessung Hauptträger

Maßgebende Geometrie Platte:

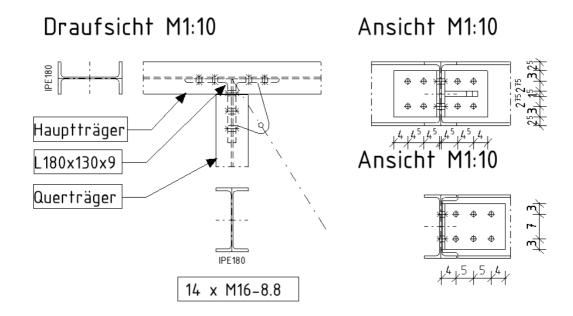
Randabstände Platte: $e_1 = 30 \text{ mm}$ Plattendicke: t = 9 mm Stegdicke IPE180: t = 5,3 mm

Bemessungswiderstände der Schrauben (M16 - 8.8):

 $\begin{aligned} &\text{Grenzabscherkraft je Scherfuge:} & &F_{\text{v,Rd}} = 60,3 \text{ kN} \\ &\text{Grenzzugkraft je Schraube:} & &F_{\text{t,Rd}} = 90,4 \text{ kN} \\ &\text{Grenzlochleibungskraft je Schraube in Platte (S355):} & 1,361 \text{ x } 64 \text{ kN x } 9 \text{ / } 10 = &F_{\text{b,Rd}} = 78,4 \text{ kN} \\ &\text{Grenzdurchstanzkraft je Schraube in Steg (S355):} & 185,4 \text{ x } 5,3 \text{ / } 10 = &B_{\text{p,Rd}} = 98,2 \text{ kN} \end{aligned}$

Nachweise der Schraubenverbindung:

Zug und Abscheren: $4.3 \text{ kN} / 60.3 \text{ kN} + 51.7 \text{ kN} / (1.4 \times 90.4 \text{ kN}) = 0.48 < 1.0$


Durchstanzen IPE180 Steg: $F_{t,Ed} = 51,7 \text{ kN} < B_{p,Rd} = 98,2 \text{ kN}$

2.2 D18.2 - IPE180 an IPE180 Stahlbauanschluss

2.2.1 Statisches System

D18.2 IPE180 an IPE180 Stahlbauanschluss

2.2.2 Maßgebende Belastung

D17			Variante 1 inkl. Erweiterung 2.OG	inkl. Last aus Windverband*
Normalkraft (Zug)	$N_{x,Ed}$	=	12,9 kN	24,9
Querkraft	$V_{z,Ed}$	=	33,2 kN	45,9
Moment	$M_{y,Ed}$	=	13,4 kN	13,4

^{*}Windlasten aus Zugverband in Dachebene (Z_{Ed}=17 kN s.Heft 1 Stahlbau)

Querträger Resultierende Querkräfte in den Einzelschrauben

	Querkraft		Zugkraft
Schraube 1	44,0	kN	-
Schraube 2	38,5	kN	-
Schraube 3	32,2	kN	-
Schraube 4	24,2	kN	-
Schraube 5	55,9	kN	-
Schraube 6	51,7	kN	-

Hauptträger Resultierende Querkräfte und Zugkräfte in den Einzelschrauben

Querkraft

Zugkraft

Schraube 1	5,75	kN	-46,9	kN
Schraube 2	5,75	kN	53,2	kN
Schraube 3	5,75	kN	-46,9	kN
Schraube 4	5,75	kN	53,2	kN
Schraube 5	5,75	kN	-46,9	kN
Schraube 6	5,75	kN	53,2	kN
Schraube 7	5,75	kN	-46,9	kN
Schraube 8	5,75	kN	53,2	kN

2.2.3 Schnittgrößen und Bemessung Querträger

Maßgebende Geometrie Platte:

Randabstände Platte: $e_1 = 40 \text{ mm}$ Plattendicke: t = 9 mmRandabstände Steg: $e_1 = 37,5 \text{ mm}$ Stegdicke IPE180: t = 5,3 mm

Bemessungswiderstände der Schrauben (M16 – 8.8):

Grenzabscherkraft je Scherfuge: $F_{v,Rd} = 60,3 \text{ kN}$

Grenzlochleibungskraft je Schraube in Steg (S355): 1,361 x (74,67 +85,33)/2 kN x 5,3 / 10 = $F_{b,Rd}$ = 57,7 kN

Grenzlochleibungskraft je Schraube in Platte (S355): 1,361 x 85,33 kN x 9 / 10 = F_{b,Rd} = 104,5 kN

Nachweise der Schraubenverbindung:

Lochleibung: $F_{v,Ed} = 55,9 \text{ kN} < F_{b,Rd} = 57,7 \text{ kN}$ Abscheren der Schraube: $F_{v,Ed} = 58,0 \text{ kN} < F_{v,Rd} = 60,3 \text{ kN}$

2.2.4 Schnittgrößen und Bemessung Hauptträger

Maßgebende Geometrie Platte:

Randabstände Platte: $e_1 = 30 \text{ mm}$ Plattendicke: t = 9 mm Stegdicke IPE180: t = 5,3 mm

Bemessungswiderstände der Schrauben (M16 – 8.8):

 $\begin{aligned} &\text{Grenzabscherkraft je Scherfuge:} & &F_{v,Rd} = 60,3 \text{ kN} \\ &\text{Grenzzugkraft je Schraube:} & &F_{t,Rd} = 90,4 \text{ kN} \\ &\text{Grenzlochleibungskraft je Schraube in Platte (S355):} & 1,361 \text{ x } 64 \text{ kN x } 9 \text{ / } 10 = &F_{b,Rd} = 78,4 \text{ kN} \\ &\text{Grenzdurchstanzkraft je Schraube in Steg (S355):} & 185,4 \text{ x } 5,3 \text{ / } 10 = &B_{p,Rd} = 98,2 \text{ kN} \end{aligned}$

Nachweise der Schraubenverbindung:

Zug und Abscheren: $5.8 \text{ kN} / 60.3 \text{ kN} + 53.2 \text{ kN} / (1.4 \times 90.4 \text{ kN}) = 0.52 < 1.0$

Durchstanzen IPE180 Steg: $F_{t,Ed}$ = 53,2 kN $< B_{p,Rd}$ = 98,2 kN

Nachweise Anschluss der Diagonalen Schweißverbindung

Siehe Nachweis Position D41.2

2.3 D19 – IPE180 auf HEA140 Stahlbauanschluss

2.3.1 Statisches System

D19 IPE180 auf HEA140 Stahlbauanschluss

2.3.2 Maßgebende Belastung

D17			Variante 1 inkl. Erweiterung 2.OG	inkl. Last aus Windverband*
Normalkraft	N _{x,Ed}	= =	13,0 kN	25,0 kN
Querkraft	V _{y,Ed}		8,2 kN	20,2 kN
Querkraft	V _{z,Ed}		50,2 kN	50,2 kN

^{*}Windlasten aus Zugverband in Dachebene (Z_{Ed}=17 kN s. Heft 1 Stahlbau)

Resultierende Querkräfte in den Einzelschrauben

	Querkraft		Zugkraft
Schraube 1	8,2	kN	-
Schraube 2	8,2	kN	-
Schraube 3	8,2	kN	-
Schraube 4	8,2	kN	-

2.3.3 Schnittgrößen und Bemessung

Maßgebende Geometrie Platte:

Randabstände Platte: $e_1 = 25 \text{ mm}$ Flanschdicke IPE180: t = 8 mm

Bemessungswiderstände der Schrauben (M16 – 8.8):

Grenzabscherkraft je Scherfuge: $F_{v,Rd} = 60,3 \text{ kN}$

Grenzlochleibungskraft je Schraube in Steg (S355): $1,361 \times 53,33 \times 10 = F_{b,Rd} = 58,0 \times$

Nachweise der Schraubenverbindung:

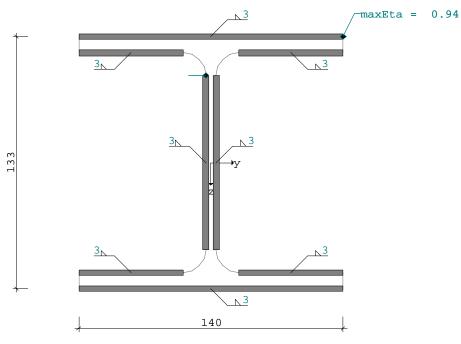
Lochleibung: $F_{v,res,Ed} = 8,2 \text{ kN}$ $< F_{b,Rd} = 58,0 \text{ kN}$ Abscheren der Schraube: $F_{v,res,Ed} = 8,2 \text{ kN}$ $< F_{v,Rd} = 60,3 \text{ kN}$

Nachweis Schweißnaht HEA140 an Ankerplatte

Maßgebende Lasten vgl. Heft 1 Stahlbau Seite 250 ff.

#	N _{Ed} kN	V _{Ed,x} kN	V _{Ed,y} kN	M _{Ed,x} kNm	M_{Ed,y} kNm	M T,Ed kNm	Belastungsart
1	0.00	21.00	-54.00	12.00	4.00	0.00	Statisch oder quasi-statisch
2	14.00	14.00	-54.00	12.00	3.00	0.00	Statisch oder quasi-statisch
3	14.00	12.00	-10.00	3.00	3.00	0.00	Statisch oder quasi-statisch
4	0.00	28.00	-10.00	3.00	4.00	0.00	Statisch oder quasi-statisch

[→] Siehe EDV-Berechnung folgende Seiten


Projekt: IK-H OP Erweiterung

Friesenweg 5 E Tel.: 040/8891670 Position: Heft 1 - Fortsetzung 2 - Zu Detail D19 22763 Fax: 040/88916767 28.07.2023 Hamburg Seite: 1

Position: Heft 1 - Fortsetzung 2 - Zu Detail D19

Schweißnaht (x64) ST5 02/2022 (Frilo R-2023-1/P06)

Maßstab 1:2

1.Überlagerung

System				
Norm Profil Blechdicke : Stahl	b = t = : \$355	140 A 31.40 ct 133.0 m 140.0 m 10.0 m	nm tf nm fy = v,d =	V = 5.5 mm r = 12.0 mm = 8.5 mm = 355.0 fu = 490.0 N/mm ² ymo = 1.00 = 251.5 N/mm ² $\beta_W = 0.90 \text{ ym}_2 = 1.25$
τw wird mit ' Geometrie o			berechn	net
Iw = 92 Iw = 140	2.0 mm av 0.0 mm av	W = 3.0 W = 3.0	mm FI	Stegnaht beidseitig Flanschnaht außen
lw = 55	o.2 mm a	W = 3.0	mm Fi	Tanschilant innen

Anschlußschnittkräfte γ-fach					
Lastfall	Nd[kN]	Myd[kNm]	Vzd[kN]	Mzd[kNm]	Vyd[kN]
1 1.Überlagerung	14.00	12.00	54.00	4.00	28.00

Ergeb	onisse Nr 1	1.Überlage	rung		
N=	14.00 My=	12.00 Vz=	54.00 Mz=	4.00 Vy=	28.00 [d,kN,kNm]

Projekt: IK-H OP Erweiterung Friesenweg 5 E Tel.: 040/8891670 Position: Heft 1 - Fortsetzung 2 - Zu Detail D19

22763 Fax: 040/88916767 28.07.2023 Hamburg Seite: 2

Spannungen an den Schweißnähten

235.1 N/mm² Flanschnaht außen σ wd

54.0 kN / Awz = 5.5 cm² = 28.0 kN / Awy = 15.0 cm² = 235.9 N/mm² Flanschnaht außen 97.8 N/mm² = $5.5 \text{ cm}^2 =$ Twd Vzd $15.0 \text{ cm}^2 =$ 18.6 N/mm² **T**wd,Vyd

 σ_{wdV}

0.93 < 1251.5 N/mm² η = $\eta = 0.39 < 1$ 251.5 N/mm² $\tau_{\text{wd}} =$ 251.5 N/mm² $\eta = 0.94 < 1$

Nachweis der Kehlnähte nach 4.5.3.3 Vereinfachtes Verfahren

Biegung und Normalkraft

Fw,Ed,N = 7.05 kN/cm = 3.0 mm(aw) * 235.1 N/mm² Fw,Rd = aw * fvw,d = 3.0 mm * 251.5 N/mm² Fw,Ed,N = 7.05 kN/cm / Fw,Rd = 7.54 kN/cm η = 0.93 < 1

Schubbeanspruchung

54.ŎO kN Fw,Ed,Vz =

= 552.0 mm² * Fw,Rd Awz * fvw,d 251.5 N/mm²

54.00 kN $/ Fw_{r}Rd = 138.81 \text{ kN} \qquad \eta = 0.39 < 1$ Fw,Ed,Vz =

Fw,Ed,Vy = 28.00 kN

Awy * fvw,d 28.00 kN $= 1503.0 \text{ mm}^2 * 251.5 \text{ N/mm}^2$ Fw,Rd =

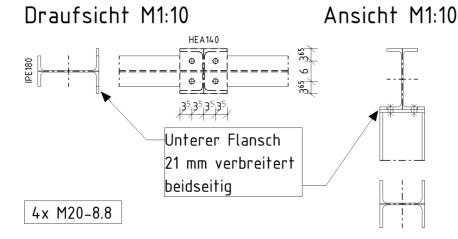
 $/ Fw,Rd = 377.96 \text{ kN} \quad \eta = 0.07 < 1$ Fw,Ed,Vy

Kombinierte Beanspruchung Fw,Ed = 7.08 kN/cm 3.0 mm(aw) * 235.9 N/mm² 3.0 mm * 251.5 N/mm² = aw * fvw.d Fw.Rd =

Fw,Ed 7.08 kN/cm $/ Fw_{i}Rd =$ 7.54 kN/cm n = 0.94 < 1

Nachweis des Profils Querschnittsklasse

Nachweis nach (6.1)


153.9 N/mm² / 355.0 N/mm² η = 0.43 < 1 σ d σRd 80.8 N/mm² / 205.0 N/mm² η = 0.39 < 1= = Τd TRd 153.9 N/mm² / 355.0 N/mm² η = 0.43 < 1 σ_{dV} σ Rd

2.4 D20.1 – HEA140 an IPE180 Stahlbauanschluss

2.4.1 Statisches System

D20.1 HEA140 an IPE180 Stahlbauanschluss

Schweißnaht Kopfplatte an HEA140: Kehlnaht umlaufend beids. 3 mm

2.4.2 Maßgebende Belastung

			Variante 1 inkl. Erweiterung 2.OG
Normalkraft (Zug)	Nx,Ed	= = = =	5,0 kN
Querkraft	Vy,Ed		2,0 kN
Querkraft	Vz,Ed		5,2 kN
Moment	My,Ed		10,1 kN
Moment	Mz,Ed		6 kN

Resultierende Querkräfte in den Einzelschrauben

	Querkraft		Zugkraft	
Schraube 1	1,6	kN	-47,6	kΝ
Schraube 2	1,6	kN	135,8	kΝ
Schraube 3	1,6	kN	133,3	kΝ
Schraube 4	1,6	kN	50,1	kΝ

2.4.3 Schnittgrößen und Bemessung

Maßgebende Geometrie Platte:

Randabstände IPE180:

Flanschdicke IPE180:

 $e_1 = 35 \text{ mm}$ t = 8 mm

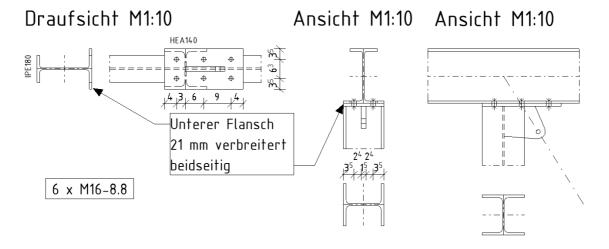
Bemessungswiderstände der Schrauben (M20 - 8.8):

Grenzabscherkraft je Scherfuge: $F_{v,Rd} = 94,1 \text{ kN}$ Grenzzugkraft je Schraube: $F_{t,Rd} = 141,1 \text{ kN}$ Grenzlochleibungskraft je Schraube in Steg (S355): $1,361 \times 76,36 \text{ kN} \times 8 / 10 = 83,1 \text{ kN}$ Grenzdurchstanzkraft je Schraube in Steg (S355): $232,6 \times 8 / 10 = 89,Rd = 186,0 \text{ kN}$

Nachweise der Schraubenverbindung:

Lochleibung: $F_{v,Ed} = 1,6 \text{ kN} < F_{b,Rd} = 83,1 \text{ kN}$ Abscheren der Schraube: $F_{v,Ed} = 1,6 \text{ kN} < F_{v,Rd} = 94,1 \text{ kN}$

Zug und Abscheren: 1,6 kN / 83,1 kN + 135,8 kN / (1,4 x 141,1 kN) = 0,71 < 1,0 Durchstanzen IPE180 Steg: $F_{t,Ed}$ = 135,8 kN $< B_{p,Rd}$ = 186,0 kN


Nachweis der Schweißnähte siehe Pos. D20.2

2.5 D20.2 - HEA140 an IPE180 Stahlbauanschluss

2.5.1 Statisches System

D20.2HEA140 an IPE180 Stahlbauanschluss

Schweißnaht Kopfplatte an HEA140: Kehlnaht umlaufend beids. 3 mm

2.5.2 Maßgebende Belastung

			Variante 1 inkl. Erweiterung 2.0G	Inkl. Windlasten
Normalkraft (Zug)	$N_{x,Ed}$	=	14,9 kN	34,9 kN
Querkraft	$V_{y,Ed}$	=	0,5 kN	18,5 kN
Querkraft	$V_{z,Ed}$	=	13,5 kN	,
Moment	$M_{v,Ed}$	=	11,3 kN	
Moment	$M_{z,Ed}$	=	1,8 kN	

^{*}Windlasten aus vertikalem Zugverband (Z_{Ed}= 26,8 kN s. Heft 1 Stahlbau)

Resultierende Querkräfte in den Einzelschrauben

	Querkraft		Zugkraft
Schraube 1	4,8	kN	-42,6
Schraube 2	5,6	kN	77,1
Schraube 3	3,3	kN	-54,0
Schraube 4	4,4	kN	65,7
Schraube 5	2,5	kN	-65,4
Schraube 6	3,8	kN	54,3

2.5.3 Schnittgrößen und Bemessung

Maßgebende Geometrie Platte:

Randabstände IPE180: $e_1 = 35 \text{ mm}$ Flanschdicke IPE180: t = 8 mm

Bemessungswiderstände der Schrauben (M16 - 8.8):

 $\begin{aligned} &\text{Grenzabscherkraft je Scherfuge:} & &F_{\text{v,Rd}} = 60,3 \text{ kN} \\ &\text{Grenzzugkraft je Schraube:} & &F_{\text{t,Rd}} = 90,4 \text{ kN} \\ &\text{Grenzlochleibungskraft je Schraube in Steg (S355):} & 1,361 \text{ x } 74,67 \text{ kN x } 8 \text{ / } 10 = &F_{\text{b,Rd}} = 98,2 \text{ kN} \\ &\text{Grenzdurchstanzkraft je Schraube in Steg (S355):} & 185,4 \text{ x } 8 \text{ / } 10 = &B_{\text{p,Rd}} = 98,2 \text{ kN} \end{aligned}$

Nachweise der Schraubenverbindung:

Lochleibung: $F_{v,res,Ed} = 5,6 \text{ kN} < F_{b,Rd} = 81,3 \text{ kN}$ Abscheren der Schraube: $F_{v,res,Ed} = 4,2 \text{ kN} < F_{v,Rd} = 60,3 \text{ kN}$

Zug und Abscheren: 4.2 kN / 60.3 kN + 77.1 kN / (1.4 x 90.4 kN) = 0.68 < 1.0

Durchstanzen IPE180 Steg: $F_{t,Ed} = 77,1 \text{ kN} < B_{p,Rd} = 98,2 \text{ kN}$

Nachweis der Schweißnähte

Anschluss der Diagonalen:

Lasten aus Zugverband $Z_{Ed} = 26.8$ kN (vgl. Heft 1 S. 181) Winkel ca. 32°

- \Rightarrow H_{Ed} = 26,8 kN x sin(32°) = 14,2 kN (Fahnenblech an Kopfplatte)
- \Rightarrow V_{Ed} = 26,8 kN x cos(32°) = 22,8 kN (Fahnenblech an Steg HEA140)

Grenzkraft pro Längeneinheit

$$F_{\text{w,Rd}} = \frac{f_{\text{u}} \cdot 2 \cdot a}{\beta_{\text{w}} \cdot \gamma_{\text{M2}} \cdot \sqrt{3}} = \frac{36 \cdot 2 \cdot 0.3 \text{ cm}}{0.8 \cdot 1.25 \cdot \sqrt{3}} = 12.47 \text{ kN/cm}$$

Schweißnaht an kurzem Schenkel L-Winkel

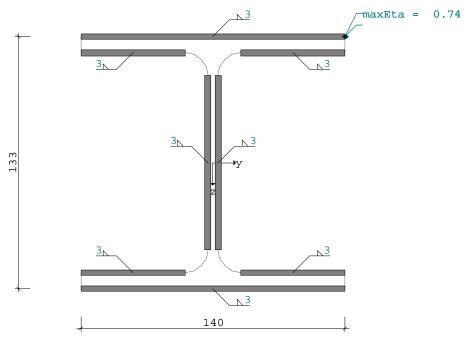
$$V_{||,Ed} = \frac{V_{Ed}}{l_w} = \frac{14,2 \text{ kN}}{10 \text{ cm}} = 1,42 \frac{\text{kN}}{\text{cm}} < F_{w,Rd}$$

Schweißnaht an langem Schenkel L-Winkel

$$V_{||,Ed} = \frac{V_{Ed}}{l_w} = \frac{22,8 \text{ kN}}{10 \text{ cm}} = 2,28 \frac{\text{kN}}{\text{cm}} < F_{w,Rd}$$

Anschluss Stütze an Fußplatte

→ Siehe EDV-Berechnung folgende Seiten


Projekt: IK-H OP Erweiterung

Friesenweg 5 E Tel.: 040/8891670 Position: Heft 1 - Fortsetzung 2 - Zu Detail D20.1 22763 Fax: 040/88916767 28.07.2023 Hamburg Seite: 1

Position: Heft 1 - Fortsetzung 2 - Zu Detail D20.1

Schweißnaht (x64) ST5 02/2022 (Frilo R-2023-1/P06)

Maßstab 1:2

1.Überlagerung

System			
Norm Profil	A = h =	140 A 31.40 cm ² 133.0 mm 140.0 mm	ly = 1030.0 cm4 lz = 389.0 cm4 tw = 5.5 mm r = 12.0 mm tf = 8.5 mm
			2FF 0. ft. 400 0. N/3
Stahl	: S355	fy	$= 355.0 \text{ fu} = 490.0 \text{ N/mm}^2 \text{ умо} = 1.00$
		tww.d	$= 251.5 \text{ N/mm}^2 \text{ Bw} = 0.90 \text{ vm}_2 = 1.25$
l			
τ _w wird	mit Vz / Awz un		
		nd V _y / A _{wy} bere	
	mit Vz / Awz un trie der Kehlnä	nd V _y / A _{wy} bere	
Geome lw = lw =	etrie der Kehlna 92.0 mm a 140.0 mm a	nd Vy / Awy bere ähte w = 3.0 mm w = 3.0 mm	Stegnaht beidseitig Flanschnaht außen
Geome lw = lw =	etrie der Kehlna 92.0 mm a 140.0 mm a	nd Vy / Awy bere ähte w = 3.0 mm w = 3.0 mm	echnet Stegnaht beidseitig
Geome W = W = W = Schweil	etrie der Kehlnä 92.0 mm a 140.0 mm a 55.2 mm a Bnahtfläche	and V _y / A _{wy} bereath the w = 3.0 mm w = 3.0 mm w = 3.0 mm	Stegnaht beidseitig Flanschnaht außen Flanschnaht innen henmomente 2.Grades der Schweißnähte
Geome W = W = W = Schweil Aw =	92.0 mm a 140.0 mm a 55.2 mm a Bnahtfläche 20.55 ci	and V _y / A _{wy} bereath and V _y / A _{wy} bereath and and and and and and and and and and	Stegnaht beidseitig Flanschnaht außen Flanschnaht innen henmomente 2.Grades der Schweißnähte = 633.55 cm4
Geome W = W = W = Schweil Aw =	92.0 mm a 140.0 mm a 55.2 mm a Bnahtfläche 20.55 ci 5.52 ci	and V _y / A _{wy} berest and V _y / A _{wy} berest and V _y / A _{wy} berest w = 3.0 mm w = 3.0 mm Flac m2 lw,y m2 lw,z	Stegnaht beidseitig Flanschnaht außen Flanschnaht innen henmomente 2.Grades der Schweißnähte

Anschlußschnittkräfte γ-fach					
Lastfall	Nd[kN]	Myd[kNm]	Vzd[kN]	Mzd[kNm]	Vyd[kN]
1 1.Überlagerung	35.00	11.30	0.50	2.00	18.50

Ergeb	onisse Nr 1	1.Überlager	ung		
N=	35.00 My=	11.30 Vz=	0.50 Mz=	2.00 Vy=	18.50 [d,kN,kNm]

Hamburg

22763

Friesenweg 5 E Tel.: 040/8891670 Projekt: IK-H OP Erweiterung

Position: Heft 1 - Fortsetzung 2 - Zu Detail D20.1

28.07.2023 Seite: 2

Spannungen an den Schweißnähten

186.8 N/mm² Flanschnaht außen σ wd

0.5 kN / Awz = 5.5 cm² = 18.5 kN / Awy = 15.0 cm² = 187.2 N/mm² Flanschnaht außen 0.9 N/mm² = $5.5 \text{ cm}^2 =$ Twd Vzd $15.0 \text{ cm}^2 =$ 12.3 N/mm² **T**wd,Vyd

Fax: 040/88916767

 σ_{wdV}

0.74 < 1251.5 N/mm² η = $\dot{\eta} = 0.05 < 1$ 251.5 N/mm² $\tau_{\text{wd}} =$ 251.5 N/mm² $\eta = 0.74 < 1$

Nachweis der Kehlnähte nach 4.5.3.3 Vereinfachtes Verfahren

Biegung und Normalkraft

Biegung und Normalkrall
Fw,Ed,N = 5.60 kN/cm = 3.0 mm(aw) * 186.8 N/mm²
Fw,Rd = aw * fvw,d = 3.0 mm * 251.5 N/mm²
Fw,Fd N = 5.60 kN/cm / Fw,Rd = 7.54 kN/cm η = 0.74 < 1

Schubbeanspruchung

 $Fw_{,}Ed_{,}Vz = 0.50 \text{ kN}$

= 552.0 mm² * Fw,Rd Awz * fvw,d 251.5 N/mm²

0.50 kN $/ Fw_{r}Rd = 138.81 \text{ kN} \qquad \eta = 0.00 < 1$ Fw,Ed,Vz =

Fw,Ed,Vy = 18.50 kN

Awy * fvw,d 18.50 kN $= 1503.0 \text{ mm}^2 * 251.5 \text{ N/mm}^2$ Fw,Rd =

 $/ Fw,Rd = 377.96 \text{ kN} \quad \eta = 0.05 < 1$ Fw,Ed,Vy

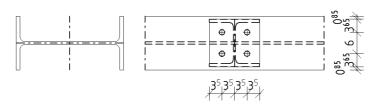
Kombinierte Beanspruchung Fw,Ed = 5.62 kN/cm 3.0 mm(aw) * 187.2 N/mm² 3.0 mm * 251.5 N/mm² = aw * fvw.d Fw.Rd =

5.62 kN/cm Fw,Ed $/ Fw_{i}Rd =$ 7.54 kN/cm n = 0.74 < 1

Nachweis des Profils Querschnittsklasse

Nachweis nach (6.1)

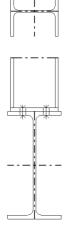
120.1 N/mm² / 355.0 N/mm² 0.34 < 1η = σ d σRd 11.9 N/mm² / 205.0 N/mm² η = 0.06 < 1= = Τd TRd 120.1 N/mm² / 355.0 N/mm² η = 0.34 < 1 σ_{dV} σ Rd



2.6 D21.1 - HEA140 an IPE300 Stahlbauanschluss

2.6.1 Statisches System

D21.1 HEA140 an IPE300 Stahlbauanschluss


Draufsicht M1:10

Drehung des HEA140 zu dem Flansch des IPE300 variiert

Ansicht M1:10

Schweißnaht Kopfplatte an HEA140: Kehlnaht umlaufend beids. 3 mm

2.6.2 Maßgebende Belastung

Variante 1 inkl. Erweiterung 2.OG

Normalkraft (Zug)	$N_{x,Ed}$	=	4,0 kN
Querkraft	$V_{y,Ed}$	=	2,0 kN
Querkraft	$V_{z,Ed}$	=	5,2 kN
Moment	$M_{y,Ed}$	=	10,8 kN
Moment	$M_{z,Ed}$	=	6 kN

Resultierende Querkräfte in den Einzelschrauben

	Querkraft		Zugkraft	
Schraube 1	1,6	kN	-47,6	kN
Schraube 2	1,6	kN	135,8	kN
Schraube 3	1,6	kN	133,3	kΝ
Schraube 4	1,6	kN	50,1	kN

2.6.3 Schnittgrößen und Bemessung

Maßgebende Geometrie Platte:

Randabstände Stirnplatte:

Flanschdicke Stirnplatte:

 $e_1 = 35 \text{ mm}$ t = 10 mm

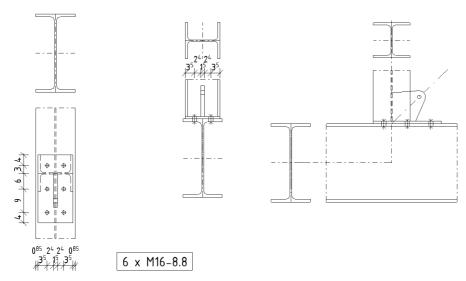
Bemessungswiderstände der Schrauben (M16 – 8.8):

 $\begin{aligned} &\text{Grenzabscherkraft je Scherfuge:} & &F_{v,Rd} = 94,1 \text{ kN} \\ &\text{Grenzzugkraft je Schraube:} & &F_{t,Rd} = 141,1 \text{ kN} \\ &\text{Grenzlochleibungskraft je Schraube in Steg (S355):} & 1,361 \text{ x } 76,36 \text{ kN x } 8 \text{ / } 10 = &F_{b,Rd} = 83,1 \text{ kN} \\ &\text{Grenzdurchstanzkraft je Schraube in Steg (S355):} & 232,6 \text{ x } 10 \text{ / } 10 = &B_{p,Rd} = 232,6 \text{ kN} \end{aligned}$

Nachweise der Schraubenverbindung:

Durchstanzen Stirnplatte: $F_{t,Ed} = 135,8 \text{ kN} < B_{p,Rd} = 232,6 \text{ kN}$

Nachweis der Schweißnähte siehe Pos. D20.2



2.7 D21.2 – HEA140 an IPE300 Stahlbauanschluss

2.7.1 Statisches System

D21.2 HEA140 an IPE300 Stahlbauanschluss

Draufsicht M1:10 Ansicht M1:10 Ansicht M1:10

Schweißnaht Kopfplatte an HEA140: Kehlnaht umlaufend beids. 3 mm

2.7.2 Maßgebende Belastung

		Variante 1 inkl. Erweiterung 2.OG		Inkl. Windlasten
Normalkraft (Zug)	$N_{x,Ed}$	=	15,8 kN	35,8 kN
Querkraft	$V_{y,Ed}$	=	0,5 kN	18,5 kN
Querkraft	$V_{z,Ed}$	=	13,5 kN	

^{*}Windlasten aus vertikalem Zugverband (Z_{Ed}= 26,8 kN s. Heft 1 Stahlbau)

Die Verbindung des HEA140 an den IPE300 ist gelenkig, daher sind die Momente zu vernachlässigen

Resultierende Querkräfte in den Einzelschrauben

		Zugkraft	
Schraube 1	5	kN	12
Schraube 2	5,8	kN	12
Schraube 3	3,4	kN	6
Schraube 4	4,5	kN	6
Schraube 5	2,5	kN	6
Schraube 6	3.9	kN	6

2.7.3 Schnittgrößen und Bemessung

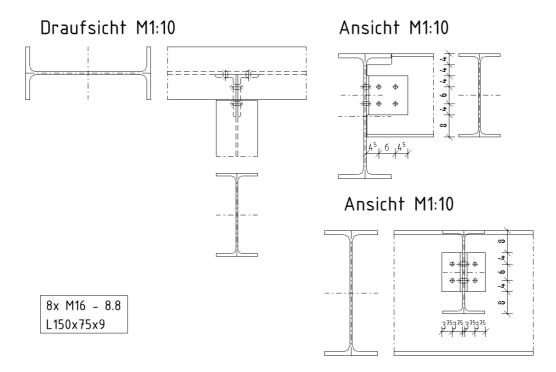
Maßgebende Geometrie Platte:

Randabstände Stirnplatte HEA140: $e_1 = 35 \text{ mm}$ Dicke Stirnplatte HEA140: t = 10 mm

Bemessungswiderstände der Schrauben (M16 - 8.8):

Grenzabscherkraft je Scherfuge: $F_{v,Rd} = 60,3 \text{ kN}$ Grenzzugkraft je Schraube: $F_{t,Rd} = 90,4 \text{ kN}$ Grenzlochleibungskraft je Schraube in Steg (S355): $1,361 \times 74,67 \text{ kN} \times 10 / 10 =$ $F_{b,Rd} = 101,6 \text{ kN}$ Grenzdurchstanzkraft je Schraube in Steg (S355): $185,4 \times 10 / 10 =$ $B_{p,Rd} = 185,4 \text{ kN}$

Nachweise der Schraubenverbindung:


Nachweis der Schweißnähte siehe Pos. D20.2

2.8 D22 - IPE300 an IPE450 Stahlbauanschluss

2.8.1 Statisches System

D22 IPE300 an IPE450 Stahlbauanschluss

2.8.2 Maßgebende Belastung

D17			Variante 1	Variante 1
			inkl. Erweiterung 2.OG	ohne Erweiterung 2.OG
Querkraft	V _{z Ed}	=	107.6 kN	106.8

2.8.3 Schnittgrößen und Bemessung

→ Siehe EDV-Berechnung folgende Seiten

Friesenweg 5 E

Tel.: 040/8891670

Fax: 040/88916767

Projekt: IK-H OP Erweiterung

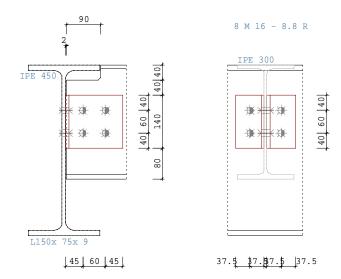
Position: Heft 1 Fortsetzung 2 - Pos. D22

14.07.2023 Seite: 1

Position: Heft 1 Fortsetzung 2 - Pos. D22

Schraubanschlüsse Stahl (x64) ST9 01/2021F (Frilo R-2023-1/P06)

TRÄGERANSCHLUß


Hamburg

DIN EN 1993

Grafik

22763

Maßstab 1:10

Kennwerte

Profil		h	tw	b	tf	r	(mm)
Hauptträger	IPE 450	450.0	9.4	190.0	14.6	21.0	
Nebenträger	IPE 300	300.0	7.1	150.0	10.7	15.0	
Winkel	L150x 75x 9	150.0	9.0	75.0	9.0	10.5	

Winkel

 $L\ddot{a}nge = 140.0 \text{ mm}$

Ŭw = Versatz =

40.0 mm 2.0 mm

Abstand von OK Ausklinkung

Ausklinkung

oben = 40.0 mm

Länge = 90.0 mm mit Brennschnitt

Stahl	fy N/mm2	fu N/mm2	γΜο	γ M2	Schraube	fyb N/mm2	fub N/mm2	d0 mm	
S355	355	490	1.00	1.25	M 16 - 8.8 R	640	800	17.0	Gewinde in Fuge

Schraubenbild	p1(Mitte)	e1(Rand)	e2(Rand)	p2(Mitte)	(mm)
Hauptträger Winkel-Hauptträger Winkel-Nebenträger	60.0 60.0 60.0	120.0 40.0 40.0	37.5 45.0	60.0	
Nebenträger	60.0	80.0	43.0	60.0	

	Schraubenreihen	Schrauben je Reihe	gesamt
Winkel-Hauptträger Winkel-Nebenträger	1 2	2 2	2 4

Nachweis mit Vd = 108.00 kN

Hauptträger - Winkel : 1 - schnittige Verbindung mit 2 * 2 Schrauben

V _{z,d}	I _p	Myv,d	T _d	T _{z,d}	T _{y,d}
kN	cm2	kNcm	kN	kN	kN
54.0	18.0	202.5	43.2	27.0	

Hamburg

Friesenweg 5 E

22763

Tel.: 040/8891670

Fax: 040/88916767

Projekt: IK-H OP Erweiterung

Position: Heft 1 Fortsetzung 2 - Pos. D22

14.07.2023

Seite: 2

Lochleibung	Lage Richtung	αd	k1	F _{b,Rd}	T _d kN	η
Profil	Rand,z	1.00	2.50	147.4	27.0	0.18
	Rand,y	1.00	2.50	147.4	33.8	0.23
	Mitte,z	0.93	2.50	136.6	27.0	0.20
Winkel	Rand,z	0.78	2.50	110.7	27.0	0.24
	Rand,y	0.74	2.50	103.8	33.8	0.33
	Mitte,z	0.93	2.50	130.7	27.0	0.21

Abscheren	αν	Fv,Rd KN	Td kN	η	
	0.60	60.3	43.2	0.72	

Nebenträger - Winkel: 2 - schnittige Verbindung mit 4 Schrauben

V _{z,d}	I _p	M _{yv,d}	T _d	T _{z,d}	T _{y,d}
kN	cm2	kNcm	kN	kN	kN
108.0	72.0	810.0	69.5	60.8	

Lochleibung	Lage Richtung	αd	k1	F _{b,Rd}	T _d kN	η
Profil Winkel	Rand,z	1.00	2.50	111.3	60.8	0.55
	Rand,y	0.84	2.50	93.9	33.8	0.36
	Mitte,z	0.93	2.50	103.1	60.8	0.59
	Mitte,y	0.93	2.50	103.1	33.8	0.33
	Rand,z	0.78	2.50	221.4	60.8	0.27
	Rand,y	0.88	2.50	249.0	33.8	0.14
	Mitte,z	0.93	2.50	261.5	60.8	0.23
	Mitte,y	0.93	2.50	261.5	33.8	0.13

Abscheren	αν	F _{v,Rd} kN	T _d kN	η	
	0.60	120.6	69.5	0.58	

Nachweis der Ausklinkung des Nebenträgers

hred = 260.0 mm 7.1 mm S 92.0 mm QKL = 108.0 kN Myd = -9.9 kNm $V_{zd} =$ = 123.4 cm3= 2340.8 cm4 Sy 33.8 cm2 Á 79.2 N/mm2 = 81.8 N/mm2 σ τ 128.8 N/mm2 $\sigma_{Rd} = 355.0 \text{ N/mm2}$ σ vgl =

 $\eta = 0.36 <= 1$

Nachweis des Winkels h = 140.0 mm s = 9.0 mm

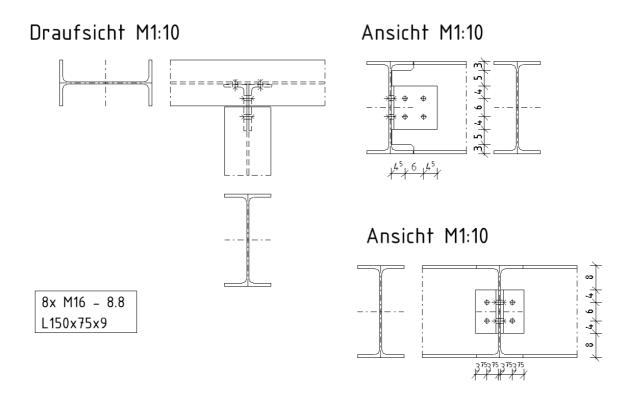
ys = Myd = 75.0 mm 54.0 kN $V_{zd} =$ 4.0 kNm = 205.8 cm422.0 cm3 Sy = 137.8 N/mm2 = 64.3 N/mm2 σ τ $\sigma_{Rd} = 355.0 \text{ N/mm2}$ $\sigma_{vgl} = 137.8 \text{ N/mm2}$ = 0.39 <= 1

Blockversagen des Winkels am Nebenträger

Anv = 6.7 cm2 Ant = 7.2 cm2 Veff,2,Rd = 277.7 kN η = 0.19 <= 1

Blockversagen des Nebenträgers

Anv = 8.1 cm2 Ant = 5.5 cm2 Veff,2,Rd = 274.5 kN η = 0.39 <= 1


maximale Auslastung

Anschluß Hauptträger - Winkel $\eta = 0.72 <= 1$

2.9 D23 - IPE300 an IPE300 Stahlbauanschluss

D23 IPE300 an IPE300 Stahlbauanschluss

2.9.1 Maßgebende Belastung

D23		Variante 1 inkl. Erweiterung 2.OG	Variante 2 ohne Erweiterung 2.OG	
Querkraft	$V_{z,Ed}$	=	75,2 kN	76,2 kN

2.9.2 Schnittgrößen und Bemessung

→ Siehe EDV-Berechnung folgende Seiten

Hamburg

Friesenweg 5 E

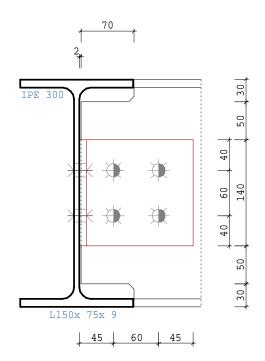
Tel.: 040/8891670 Fax: 040/88916767 Projekt: IK-H OP Erweiterung

Position: Heft 1 Fortsetzung 2 - Pos. D23

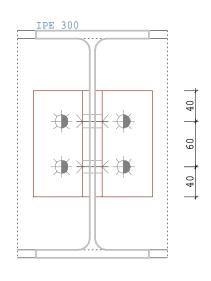
14.07.2023 Seite: 1

Position: Heft 1 Fortsetzung 2 - Pos. D23

Schraubanschlüsse Stahl (x64) ST9 01/2021F (Frilo R-2023-1/P06)


TRÄGERANSCHLUß

DIN EN 1993


Grafik

22763

Maßstab 1:5

8 M 16 - 8.8 R

37.5 37.5 37.5 37.5

Kennwerte

Profil		h	tw	b	tf	r	(mm)
Hauptträger	IPE 300	300.0	7.1	150.0	10.7	15.0	
Nebenträger	IPE 300	300.0	7.1	150.0	10.7	15.0	
Winkel	L150x 75x 9	150.0	9.0	75.0	0.0	10.5	

Winkel

 $L\ddot{a}nge = 140.0 \text{ mm}$

Uw = 50.0 mm

Abstand von OK Ausklinkung

Ausklinkung

Versatz = 2.0 mm oben = 30.0 mm

unten = 30.0 mm Länge = 70.0 mm

mit Brennschnitt

Stahl	fy N/mm2	fu N/mm2	γм0	γ M2	Schraube	fyb N/mm2	fub N/mm2	d0 mm	
S355	355	490	1.00	1.25	M 16 - 8.8 R	640	800	17.0	Gewinde in Fuge

Schraubenbild	p1(Mitte)	e1(Rand)	e2(Rand)	p2(Mitte)	(mm)
Hauptträger Winkel-Hauptträger Winkel-Nebenträger	60.0 60.0 60.0	120.0 40.0 40.0	37.5 45.0	60.0	
Nebenträger	60.0	90.0	43.0	60.0	

	Schraubenreihen	Schrauben je Reihe	gesamt
Winkel-Hauptträger Winkel-Nebenträger	1 2	2 2	2 4

Hamburg

Friesenweg 5 E

22763

Tel.: 040/8891670 Fax: 040/88916767 Projekt: IK-H OP Erweiterung Position: Heft 1 Fortsetzung 2 - Pos. D23

14.07.2023

Seite: 2

Nachweis mit Vd = 77.00 kN

Hauptträger - Winkel : 1 - schnittige Verbindung mit 2 * 2 Schrauben

$\begin{matrix} V_{z,d} \\ kN \end{matrix}$	I _p cm2	M _{yv,d} kNcm	T _d kN	T _{z,d} kN	T _{y,d} kN
38.5	18.0	144.4	30.8	19.2	24.1

Lochleibung	Lage Richtung	αd	k1	F _{b,Rd}	T _d kN	η
Profil	Rand,z	1.00	2.50	111.3	19.2	0.17
	Rand,y	1.00	2.50	111.3	24.1	0.22
	Mitte,z	0.93	2.50	103.1	19.2	0.19
Winkel	Rand,z	0.78	2.50	110.7	19.2	0.17
	Rand,y	0.74	2.50	103.8	24.1	0.23
	Mitte,z	0.93	2.50	130.7	19.2	0.15

Abscheren	αν	Fv,Rd KN	T _d kN	η	
	0.60	60.3	30.8	0.51	

Nebenträger - Winkel : 2 - schnittige Verbindung mit 4 Schrauben

V _{z,d}	I _p	Myv,d	Td	Tz,d	T _{y,d}
kN	cm2	kNcm	k N	kN	kN
77.0	72.0	577.5	49.5	43.3	

Lochleibung	Lage Richtung	αd	k1	F _{b,Rd}	T _d kN	η
Profil Winkel	Rand,z Rand,y Mitte,z Mitte,y Rand,z Rand,y Mitte,z	1.00 0.84 0.93 0.93 0.78 0.88 0.93	2.50 2.50 2.50 2.50 2.50 2.50 2.50	111.3 93.9 103.1 103.1 221.4 249.0 261.5	43.3 24.1 43.3 24.1 43.3 24.1 43.3	0.39 0.26 0.42 0.23 0.20 0.10 0.17
	Mitte,y	0.93	2.50	261.5	24.1	0.09

Abscheren	αν	F _{v,Rd}	T _d kN	η	
	0.60	120.6	49.5	0.41	

Nachweis der Ausklinkung des Nebenträgers

 $h_{red} = 240.0 \text{ mm}$ 7.1 mm QKL = $ys = M_{yd} =$ 72.0 mm 77.0 kN $V_{zd} =$ -5.5 kNm = 817.9 cm451.1 cm3 Sy = Α 17.0 cm2 = = 81.3 N/mm2 67.8 N/mm2 τ = = 117.4 N/mm2 $\sigma_{Rd} = 355.0 \text{ N/mm2}$ σ vgl

η = 0.33 <= 1

Nachweis des Winkels

= 140.0 mm9.0 mm = 75.0 mm ys $V_{7d} =$ 38.5 kN $\dot{M}_{vd} =$ 2.9 kNm = 205.8 cm4 22.0 cm3 Sy lу = 98.2 N/mm2 45.8 N/mm2 = = σ τ $\sigma_{vgl} = 98.2 \text{ N/mm2}$ $\sigma_{Rd} = 355.0 \text{ N/mm2}$ 0.28 <= 1

Blockversagen des Winkels am Nebenträger

Anv = 6.7 cm2 Ant = 7.2 cm2 Veff,2,Rd = 277.7 kN η = 0.14 <= 1

Friesenweg 5 E Tel.: 040/8891670

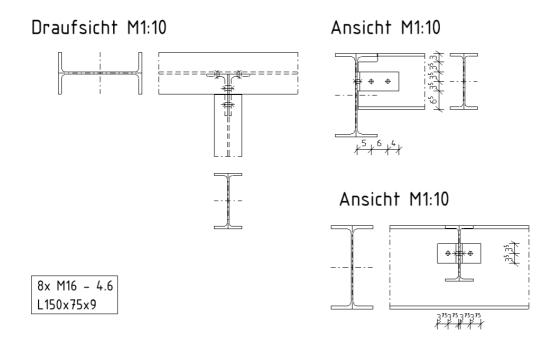
22763 Hamburg Fax: 040/88916767 14.07

Projekt: IK-H OP Erweiterung

Position: Heft 1 Fortsetzung 2 - Pos. D23

14.07.2023 Seite: 3

Blockversagen des Nebenträgers


maximale Auslastung

Anschluß Hauptträger - Winkel $\eta = 0.51 <= 1$

2.10 D24 - IPE200 an IPE300 Stahlbauanschluss

D24 IPE200 an IPE300 Stahlbauanschluss

2.10.1 Maßgebende Belastung

			Variante 1 inkl. Erweiterung 2.OG	Variante 2 ohne Erweiterung 2.OG		
Querkraft	$V_{z,Ed}$	=	22,7 kN	22,7 kN		

2.10.2 Schnittgrößen und Bemessung

ightarrow Siehe EDV-Berechnung folgende Seiten

Hamburg

Friesenweg 5 E

Tel.: 040/8891670

Fax: 040/88916767

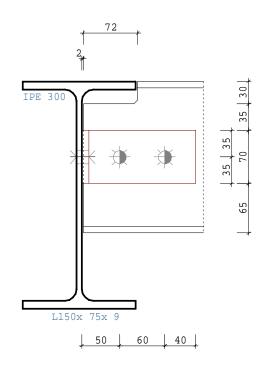
Projekt: IK-H OP Erweiterung

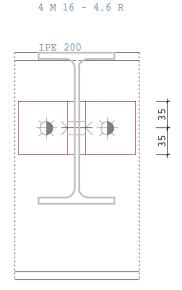
Position: Heft 1 Fortsetzung 2 - Pos. D24

14.07.2023 Seite: 1

Position: Heft 1 Fortsetzung 2 - Pos. D24

Schraubanschlüsse Stahl (x64) ST9 01/2021F (Frilo R-2023-1/P06)


TRÄGERANSCHLUß


DIN EN 1993

Grafik

22763

Maßstab 1:5

[37.5]37.5]37.5]

Kennwerte

Profil		h	tw	b	tf	r	(mm)
Hauptträger	IPE 300	300.0	7.1	150.0	10.7	15.0	
Nebenträger	IPE 200	200.0	5.6	100.0	8.5	12.0	
Winkel	L150x 75x 9	150.0	9.0	75.0	0.0	10.5	

Winkel

Länge = 70.0 mm Uw = 35.0 mm

2.0 mm

Abstand von OK Ausklinkung

Ausklinkung

oben = 30.0 mm

Länge = 72.0 mm

Versatz =

mit Brennschnitt

Stahl	fy N/mm2	fu N/mm2	γΜο	γ M2	Schraube	fyb N/mm2	fub N/mm2	d0 mm	
S355	355	490	1.00	1.25	M 16 - 4.6 R	240	400	17.0	Gewinde in Fuge

Schraubenbild	p1(Mitte)	e1(Rand)	e2(Rand)	p2(Mitte)	(mm)
Hauptträger Winkel-Hauptträger Winkel-Nebenträger Nebenträger		100.0 35.0 35.0 70.0	37.5 40.0	60.0 60.0	

	Schraubenreihen	Schrauben je Reihe	gesamt
Winkel-Hauptträger Winkel-Nebenträger	1 2	1	1 2

Hamburg

Friesenweg 5 E

22763

Tel.: 040/8891670 Fax: 040/88916767 Projekt: IK-H OP Erweiterung Position: Heft 1 Fortsetzung 2 - Pos. D24

14.07.2023

Seite: 2

Nachweis mit Vd = 23.00 kN

Hauptträger - Winkel : 1 - schnittige Verbindung mit 2 * 1 Schrauben

V _{z,d} kN	I _p cm2	M _{yv,d} kNcm	T _d kN	T _{z,d} kN	T _{y,d} kN
11.5	9.0	43.1	18.4	11.5	14.4

Gegenseitige Druckabstützung der Winkel: $b_D = 22.2 \text{ mm}$ Kontaktfläche $A_D = 2.22 \text{ cm}2$

10.0 mm $h_D =$

Kontaktpressung

 $\sigma_D = 64.9 \text{ N/mm}^2$

 $\sigma_{Rd} = 355.0 \text{ N/mm}2$

 $\eta = 0.18 <= 1$

Lochleibung	Lage Richtung	αd	k1	F _{b,Rd} kN	T _d kN	η
Profil	Rand,z Rand,y	0.82 0.82	2.50 2.50	90.9 90.9	11.5 14.4	
Winkel	Rand,z Rand,y	0.69 0.74	2.50 2.50	96.8 103.8	11.5 14.4	

Abscheren	αν	F _{v,Rd}	T _d kN	η	
	0.60	30.1	18.4	0.61	

Nebenträger - Winkel: 2 - schnittige Verbindung mit 2 Schrauben

$\begin{matrix} V_{z,d} \\ kN \end{matrix}$	I _p cm2	M _{yv,d} kNcm	T _d kN	T _{z,d} kN	T _{y,d} kN
23.0	18.0	184.0	42.2	42.2	0.0

Lochleibung	Lage Richtung	αd	k1	F _{b,Rd}	T _d kN	η
Profil	Rand,z	0.82	2.50	71.7	42.2	0.59
Winkel	Rand,z	0.69	2.50	193.7	42.2	0.22

Abscheren	αν	F _{v,Rd} kN	T _d kN	η	
	0.60	60.3	42.2	0.70	

Nachweis der Ausklinkung des Nebenträgers

 $h_{red} = 170.0 mm$ S 5.6 mm 74.0 mm QKL = 23.0 kN $V_{zd} =$ Myd = -1.7 kNm = 513.7 cm4Sy = 41.6 cm3 Á 17.5 cm2 =

40.4 N/mm2 34.1 N/mm2 τ σ = 355.0 N/mm2 54.6 N/mm2 = σ vgl σ Rd

0.15 <= 1

Nachweis des Winkels

70.0 mm 9.0 mm h S = 80.0 mm 11.5 kN Myd = 0.9 kNm $V_{zd} =$ lу 25.7 cm4 Sy 5.5 cm3 27.4 N/mm2 = 125.2 N/mm2 τ = $\sigma_{Rd} = 355.0 \text{ N/mm}2$

Blockversagen des Winkels am Nebenträger

2.4 cm2 Ant = 6.7 cm2 $Veff_{,2}Rd = 180.3 kN$ = 0.06 <= 1 η

Friesenweg 5 E Tel.: 040/8891670

22763 Hamburg Fax: 040/88916767 14.07.2023 Seite: 3

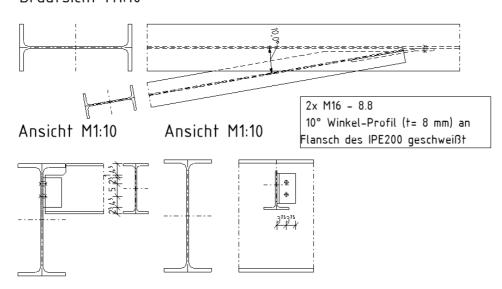
Projekt: IK-H OP Erweiterung

Position: Heft 1 Fortsetzung 2 - Pos. D24

Blockversagen des Nebenträgers

maximale Auslastung

Anschluß Nebenträger - Winkel $\eta = 0.70 <= 1$



2.11 D25 - IPE200 an IPE450 Stahlbauanschluss

2.11.1 Statisches System

D25 IPE200 an IPE450 Stahlbauanschluss

Draufsicht M1:10

Das Winkelblech ist am Steg des IPE200 geschweißt. Der obere und untere Flansch des IPE200 wird in den sich mit dem IPE450 schneidenden Bereichen ausgeschnitten

2.11.2 Maßgebende Belastung

D25			Variante 1 inkl. Erweiterung 2.OG	Variante 2 ohne Erweiterung 2.OG
Querkraft	$V_{z,Ed}$	=	20,3 kN	20,3 kN

2.11.3 Schnittgrößen und Bemessung

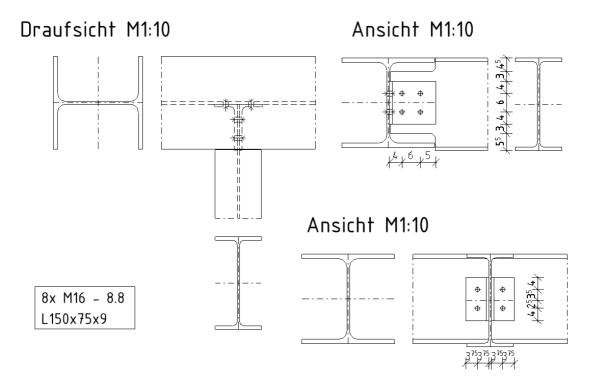
Maßgebende Geometrie Platte:

Randabstände Stahlwinkel: $e_1 = 35 \text{ mm}$ Stahlwinkel: t = 8 mm

Bemessungswiderstände der Schrauben (M16 – 8.8):

Grenzabscherkraft je Scherfuge: $F_{v,Rd} = 60,3 \text{ kN}$ Grenzlochleibungskraft je Schraube: $1,361 \times 74,67 \text{ kN} \times 8 / 10 = F_{b,Rd} = 101,6 \text{ kN}$

Nachweise der Schraubenverbindung:


Lochleibung:	$F_{v,Ed} =$	20,3 kN	$< F_{b,Rd} = 101,6 \text{ kN}$
Abscheren der Schraube:	$F_{v.Ed} =$	20,3 kN	$< F_{v,Rd} = 62.8 \text{ kN}$

2.12 D26 - IPE300 an HEA300 Stahlbauanschluss

2.12.1 Statisches System

D26 IPE300 an HEA300 Stahlbauanschluss

2.12.2 Maßgebende Belastung

D26			Variante 1 inkl. Erweiterung 2.OG	Variante 2 ohne Erweiterung 2.OG
Querkraft	$V_{z,Ed}$	=	51,2 kN	50,4 kN

2.12.3 Schnittgrößen und Bemessung

ightarrow Siehe EDV-Berechnung folgende Seiten

Hamburg

Friesenweg 5 E

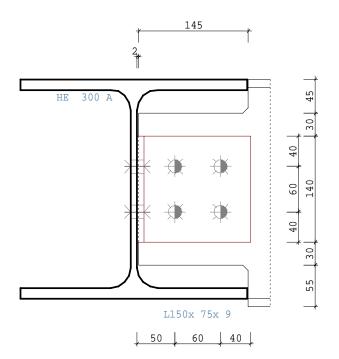
Tel.: 040/8891670 Fax: 040/88916767 Projekt: IK-H OP Erweiterung

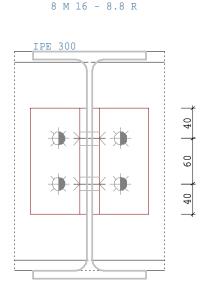
Position: Heft 1 Fortsetzung 2 - Pos. D26

14.07.2023 Seite: 1

Position: Heft 1 Fortsetzung 2 - Pos. D26

Schraubanschlüsse Stahl (x64) ST9 01/2021F (Frilo R-2023-1/P06)


TRÄGERANSCHLUß


DIN EN 1993

Grafik

22763

Maßstab 1:5

37.5 37.5 37.5 37.5

Kennwerte

Profil		h	tw	b	tf	r	(mm)
Hauptträger	HE 300 A	290.0	8.5	300.0	14.0	27.0	
Nebenträger	IPE 300	300.0	7.1	150.0	10.7	15.0	
Winkel	L150x 75x 9	150.0	9.0	75.0	0.0	10.5	

Winkel

 $L\ddot{a}nge = 140.0 mm$

Ŭw =

30.0 mm

2.0 mm

Abstand von OK Ausklinkung

Ausklinkung

45.0 mm oben =

Versatz =

unten = 55.0 mm

 $L\ddot{a}nge = 145.0 mm$

mit Brennschnitt

Stahl	fy N/mm2	fu N/mm2	γΜο	γ M2	Schraube	fyb N/mm2	fub N/mm2	d0 mm	
S355	355	490	1.00	1.25	M 16 - 8.8 R	640	800	17.0	Gewinde in Fuge

Schraubenbild	p1(Mitte)	e1(Rand)	e2(Rand)	p2(Mitte)	(mm)
Hauptträger Winkel-Hauptträger Winkel-Nebenträger Nebenträger	60.0 60.0 60.0 60.0	115.0 40.0 40.0 70.0	37.5 40.0	60.0 60.0	

	Schraubenreihen	Schrauben je Reihe	gesamt
Winkel-Hauptträger	1	2	2 4
Winkel-Nebenträger	2	2	

Hamburg

Friesenweg 5 E

22763

Tel.: 040/8891670

Fax: 040/88916767

Projekt: IK-H OP Erweiterung

Position: Heft 1 Fortsetzung 2 - Pos. D26

14.07.2023

Seite: 2

Nachweis mit Vd = 52.00 kN

Hauptträger - Winkel : 1 - schnittige Verbindung mit 2 * 2 Schrauben

$\begin{matrix} V_{z,d} \\ kN \end{matrix}$	I _p cm2	M _{yv,d} kNcm	T _d kN	T _{z,d} kN	T _{y,d} kN
26.0	18.0	97.5	20.8	13.0	16.2

Lochleibung	Lage Richtung	αd	k1	F _{b,Rd}	T _d kN	η
Profil	Rand,z	1.00	2.50	133.3	13.0	0.10
	Rand,y	1.00	2.50	133.3	16.2	0.12
	Mitte,z	0.93	2.50	123.5	13.0	0.11
Winkel	Rand,z	0.78	2.50	110.7	13.0	0.12
	Rand,y	0.74	2.50	103.8	16.2	0.16
	Mitte,z	0.93	2.50	130.7	13.0	0.10

Abscheren	αν	Fv,Rd KN	T _d kN	η	
	0.60	60.3	20.8	0.35	

Nebenträger - Winkel : 2 - schnittige Verbindung mit 4 Schrauben

V _{z,d}	I _p	Myv,d	T _d	Tz,d	T _{y,d}
kN	cm2	kNcm	kN	kN	kN
52.0	72.0	416.0	34.9	30.3	

Lochleibung	Lage Richtung	αd	k1	F _{b,Rd}	T _d kN	η
Profil	Rand,z	1.00	2.50	111.3	30.3	0.27
	Rand,y	0.94	2.50	104.8	17.3	0.17
	Mitte,z	0.93	2.50	103.1	30.3	0.29
	Mitte,y	0.93	2.50	103.1	17.3	0.17
Winkel	Rand,z	0.78	2.50	221.4	30.3	0.14
	Rand,y	0.78	2.50	221.4	17.3	0.08
	Mitte,z	0.93	2.50	261.5	30.3	0.12
	Mitte,y	0.93	2.50	261.5	17.3	0.07

Abscheren	αν	F _{v,Rd}	T _d kN	η	
	0.60	120.6	34.9	0.29	

Nachweis der Ausklinkung des Nebenträgers

 $h_{red} = 200.0 \text{ mm}$ 7.1 mm QKL = $ys = M_{yd} =$ 147.0 mm = 52.0 kN $V_{zd} =$ -7.6 kNm = 473.3 cm435.5 cm3 Sy = Α 14.2 cm2 = 54.9 N/mm2 = 161.5 N/mm2 τ = = 161.5 N/mm2 = 0.45 <= 1 $= 355.0 \text{ N/mm}^2$ σ vgl σ Rd

Nachweis des Winkels

= 140.0 mm9.0 mm = 80.0 mm ys $V_{7d} =$ 26.0 kN $\dot{M}_{vd} =$ 2.1 kNm 205.8 cm4 22.0 cm3 lу Sy = = 31.0 N/mm2 70.7 N/mm2 = σ τ 70.7 N/mm2 $\sigma_{Rd} = 355.0 \text{ N/mm2}$ $\sigma_{\text{vgI}} =$ 0.20 <= 1

Blockversagen des Winkels am Nebenträger

Anv = 6.7 cm2 Ant = 6.7 cm2 Veff,2,Rd = 268.8 kN η = 0.10 <= 1

Friesenweg 5 E Tel.: 040/8891670

22763 Hamburg Fax: 040/88916767 14

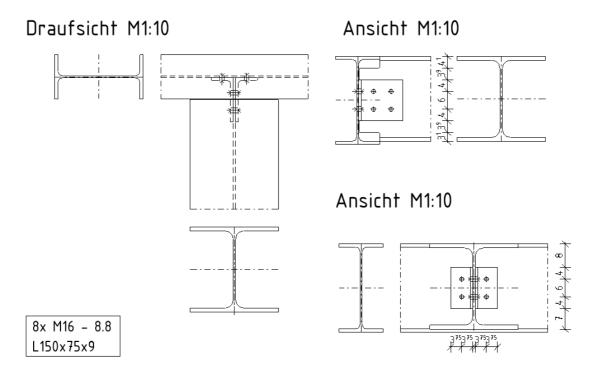
Projekt: IK-H OP Erweiterung

Position: Heft 1 Fortsetzung 2 - Pos. D26

14.07.2023 Seite: 3

Blockversagen des Nebenträgers

maximale Auslastung


Ausklinkung $\eta = 0.45 <= 1$

2.13 D27 - HEA300 an IPE300 Stahlbauanschluss

2.13.1 Statisches System

D27 HEA300 an IPE300 Stahlbauanschluss

2.13.2 Maßgebende Belastung

D27		Variante 1 inkl. Erweiterung 2.OG	Variante 2 ohne Erweiterung 2.OG
Querkraft	Vz Fd =	134.7 kN	134.6 kN

2.13.3 Schnittgrößen und Bemessung

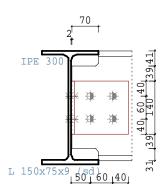
→ Siehe EDV-Berechnung folgende Seiten

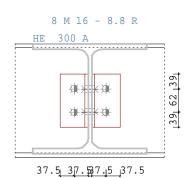
Friesenweg 5 E Tel.: 040/8891670

22763 Hamburg Fax: 040/88916767 Projekt: IK-H OP Erweiterung

Position: Heft 1 Fortsetzung 2 - Pos. D27

14.07.2023 Seite: 1


Position: Heft 1 Fortsetzung 2 - Pos. D27


Schraubanschlüsse Stahl (x64) ST9 01/2021F (Frilo R-2023-1/P06)

TRÄGERANSCHLUß DIN EN 1993

Grafik

Maßstab 1:10

Kennwerte

Profil		h	tw	b	tf	r	(mm)
Hauptträger	IPE 300	300.0	7.1	150.0	10.7	15.0	
Nebenträger	HE 300 A	290.0	8.5	300.0	14.0	27.0	
Winkel	L 150x75x9 (sd)	150.0	9.0	75.0	0.0	10.5	

Winkel

Länge = 140.0 mm

Ŭw = 39.0 mm

2.0 mm

Abstand von OK Ausklinkung

Versatz = Ausklinkung oben = 41.0 mm

unten = 31.0 mm

Länge =

70.0 mm mit Brennschnitt

(Stahl	fy N/mm2	fu N/mm2	γм0	γ M2	Schraube	fyb N/mm2	fub N/mm2	d0 mm	
(S355	355	490	1.00	1.25	M 16 - 8.8 R	640	800	17.0	Gewinde in Fuge

Schraubenbild	p1(Mitte)	e1(Rand)	e2(Rand)	p2(Mitte)	(mm)
Hauptträger Winkel-Hauptträger Winkel-Nebenträger Nebenträger	62.0 62.0 60.0 60.0	119.0 39.0 40.0 79.0	37.5 40.0 48.0	60.0 60.0	

	Schraubenreihen	Schrauben je Reihe	gesamt
Winkel-Hauptträger Winkel-Nebenträger	1 2	2 2	2

Nachweis mit Vd = 135.00 kN

Hauptträger - Winkel : 1 - schnittige Verbindung mit 2 * 2 Schrauben

V _{z,d}	I _p	Myv,d	Td	T _{z,d}	T _{y,d}
kN	cm2	kNcm	kN	kN	kN
67.5	19.2	253.1	53.0	33.8	

Hamburg

Friesenweg 5 E

22763

Tel.: 040/8891670 Fax: 040/88916767 Projekt: IK-H OP Erweiterung

Position: Heft 1 Fortsetzung 2 - Pos. D27

14.07.2023

Seite: 2

Lochleibung	Lage Richtung	αd	k1	F _{b,Rd} kN	T _d kN	η
Profil	Rand,z	1.00	2.50	111.3	33.8	0.30
	Rand,y	1.00	2.50	111.3	40.8	0.37
	Mitte,z	0.97	2.50	107.5	33.8	0.31
Winkel	Rand,z	0.76	2.50	107.9	33.8	0.31
	Rand,y	0.74	2.50	103.8	40.8	0.39
	Mitte,z	0.97	2.50	136.3	33.8	0.25

Abscheren	αν	Fv,Rd KN	T _d kN	η	
	0.60	60.3	53.0	0.88	

Nebenträger - Winkel : 2 - schnittige Verbindung mit 4 Schrauben

$\begin{matrix} V_{z,d} \\ kN \end{matrix}$	I _p cm2	M _{yv,d} kNcm	T _d kN	T _{z,d} kN	T _{y,d} k N
135.0	72.0	1080.0	90.7	78.8	45.0

Lochleibung	Lage Richtung	αd	k1	F _{b,Rd} kN	T _d kN	η
Profil Winkel	Rand,z Rand,y Mitte,z Mitte,y Rand,z Rand,y Mitte,z Mitte,y	1.00 0.94 0.93 0.93 0.78 0.78 0.93	2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50	133.3 125.4 123.5 123.5 221.4 221.4 261.5 261.5	78.8 45.0 78.8 45.0 78.8 45.0 78.8 45.0	0.59 0.36 0.64 0.36 0.36 0.20 0.30 0.17

Abscheren	αν	F _{v,Rd}	T _d kN	η	
	0.60	120.6	90.7	0.75	

Nachweis der Ausklinkung des Nebenträgers

 $h_{red} = 218.0 mm$ S 8.5 mm QKL = 72.0 mm Vzd = 135.0 kNMyd = -9.7 kNm = 733.8 cm450.5 cm3 Sy 18.5 cm2 Á = = 144.4 N/mm2 = 109.3 N/mm2 τ $\sigma_{Vgl} = 189.3 \text{ N/mm2}$ $\sigma_{Rd} = 355.0 \text{ N/mm2}$

 $\eta = 0.53 <= 1$

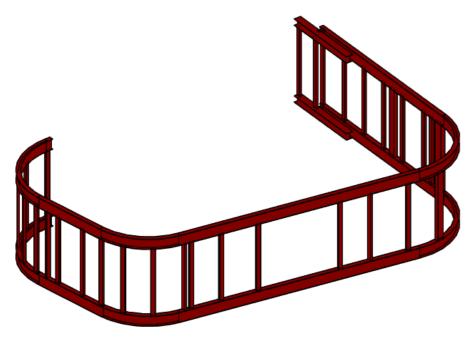
Nachweis des Winkels

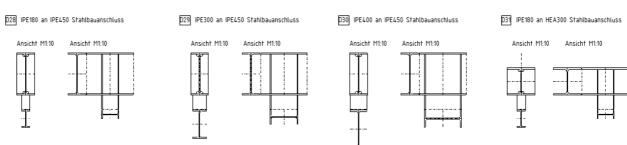
= 140.0 mm9.0 mm = ys 80.0 mm 67.5 kN Myd = Vzd = 5.4 kNm = 205.8 cm4 = 183.7 N/mm2 22.0 cm3 Sy = 80.4 N/mm2 τ $\sigma_{vgl} = 183.7 \text{ N/mm}2$ $\sigma_{Rd} = 355.0 \text{ N/mm2}$ = 0.52 <= 1

Blockversagen des Winkels am Nebenträger

Anv = 6.7 cm2 Ant = 6.7 cm2Veff,2,Rd = 268.8 kN η = 0.25 <= 1

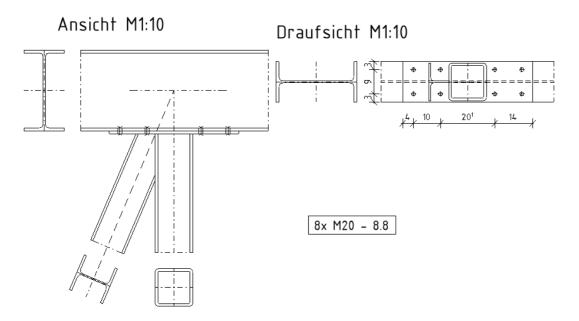
Blockversagen des Nebenträgers


maximale Auslastung


Anschluß Hauptträger - Winkel $\eta = 0.88 <= 1$

2.14 D28 D29 D30 D31 – Vierendeelträger Stahlbauanschlüsse

2.14.1 Statisches System


2.14.2 Schnittgrößen und Bemessung

Die Bemessung der Stahlprofile des Vierendeelträger ist im Heft 1 Stahlbau erfolgt. Die Profile werden durch Doppel HV-Nähte voll miteinander verschweißt. Die Rippen sind mindestens in der Stärke des Flansches der jeweiligen Stiele auszuführen und ebenfalls mit Doppel HV-Nähten einzuschweißen.

2.15 D32 - SHS140x10 - IPE300 - HEA140 Stahlbaufachwerkknoten

SHS Profil an Kopfplatte mit HV Naht

2.15.1 Maßgebende Belastung

Max. Zugkraft Diagonale 690,3 kN (Variante 2)

Hieraus ergibt sich auf den Anschluss folgende Beanspruchung:

$$H = 690,3 \text{ x sin}(23) = 270 \text{ kN}$$

 $V = 690,3 \text{ x cos}(23) = 636 \text{ kN}$

Die resultierende vertikale Kraft aus der Diagonalen wird auf den SHS140x10 Stiel übertragen. Bei dem oberen Anschluss wirken auf den Schraubanschluss nur horizontale Schnittkräfte. Bei dem unteren Schraubanschluss wirken vertikale (Zug) und horizontale Schnittkräfte.

2.15.2 Schnittgrößen und Bemessung

Maßgebende Geometrie Platte:

Randabstände: $e_1 = 40 \text{ mm}$ Dicke Stahlplatte: t = 10 mm

Bemessungswiderstände der Schrauben (M16 - 8.8):

Grenzabscherkraft je Scherfuge: $F_{v,Rd} = 94,1 \text{ kN}$ Grenzzugkraft je Schraube: $F_{t,Rd} = 141,1 \text{ kN}$ Grenzlochleibungskraft je Schraube in Steg (S355): $1,361 \times 87,27 \text{ kN} \times 10 / 10 = F_{b,Rd} = 116,1 \text{ kN}$

Grenzdurchstanzkraft je Schraube in Steg (S355): 232,6 x 10 / 10 = $B_{p,Rd} = 232,6 \text{ kN}$

Nachweise der Schraubenverbindung:

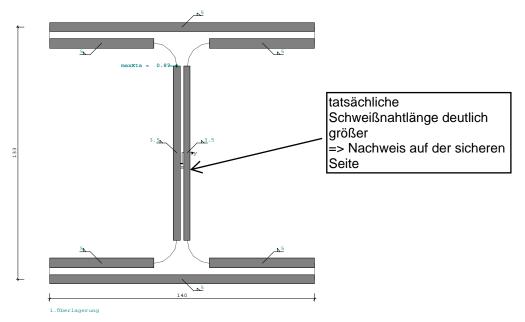
 $F_{v,Ed} =$ Lochleibung: 270/8 = 34 kN $< F_{b,Rd} = 116,1 \text{ kN}$ 270/8 = 34 kNAbscheren der Schraube: $F_{v,Ed} =$ $< F_{v,Rd} = 94,1 \text{ kN}$ = 0.77 < 1.0

34 kN / 94,1 kN + 80 kN / (1,4 x 141,1 kN) Zug und Abscheren:

Durchstanzen Stirnplatte: $F_{t,Ed} =$ 636/8 = 80 kN $< B_{p,Rd} = 232,6 \text{ kN}$

Nachweis Schweißnaht HEA140 an SHS Profil und Kopfplatte

→ Siehe EDV-Berechnung folgende Seiten


Projekt: IK-H OP Erweiterung Friesenweg 5 E Tel.: 040/8891670 Position: Heft 1 - Fortsetzung 2 - Zu Detail D32

22763 Fax: 040/88916767 28.07.2023 Hamburg Seite: 1

Position: Heft 1 - Fortsetzung 2 - Zu Detail D32

Schweißnaht (x64) ST5 02/2022 (Frilo R-2023-1/P06)

Maßstab 1:2

System	
Norm : DIN EN 1993	
Profil : HE 140 A	2000 and 4
A = 31.40 c h = 133.0 r	
b = 140.0 r	
Blechdicke: t = 10.0 r	
Stahl: \$355	$fy = 355.0 \text{ fu} = 490.0 \text{ N/mm}^2 y_{M0} = 1.00$
	$w,d = 251.5 \text{ N/mm}^2 \beta_w = 0.90 \gamma_{M2} = 1.25$
τ_W wird mit V_z / A_{Wz} und V_y / A_{Wy}	berechnet
Geometrie der Kehlnähte	
lw = 92.0 mm aw = 3.5	mm Stegnaht beidseitig
lw = 140.0 mm aw = 5.0	mm Flanschnaht außen
lw = 55.2 mm aw = 5.0	mm Flanschnaht innen
Schweißnahtfläche	Flächenmomente 2.Grades der Schweißnähte
Aw = 31.49 cm2	$Iw_{y} = 1036.78 \text{ cm}4$
$Aw_{x}z = 6.44 \text{ cm}2$	Iw,z = 455.75 cm4 lw,yz = 0.00 cm4
$Aw_{y} = 25.05 \text{ cm}2$	

Ansc	hlußschnittkräfte y ғ-fach					
	Lastfall	Nd[kN]	Myd[kNm] Vzd[kN]		Mzd[kNm]	Vyd[kN]
1	1.Überlagerung	691.00	0.00	0.00	0.00	0.00

Erge	bnisse Nr	1	1.Überlage	rung		
N=	691.00 My=		0.00 Vz=	0.00 Mz=	0.00 Vy=	0.00 [d,kN,kNm]

Projekt: IK-H OP Erweiterung

Friesenweg 5 E Tel.: 040/8891670 Position: Heft 1 - Fortsetzung 2 - Zu Detail D32

22763 28.07.2023 Hamburg Fax: 040/88916767 Seite: 2

Spannungen an den Schweißnähten

219.4 N/mm² σ wd

219.4 N/mm² Stegnaht beidseitig σ wdV

η = η = σ wd 219.4 N/mm² / σ w,Rd 251.5 N/mm² 0.87 < 1 $0.0 \text{ N/mm}^2 / \tau_{\text{W,Rd}} = 219.4 \text{ N/mm}^2 / \sigma_{\text{W,Rd}} =$ 251.5 N/mm² 0.00 < 1 = τ wd σ wdV 251.5 N/mm² η = 0.87 < 1

Nachweis der Kehlnähte nach 4.5.3.3 Vereinfachtes Verfahren

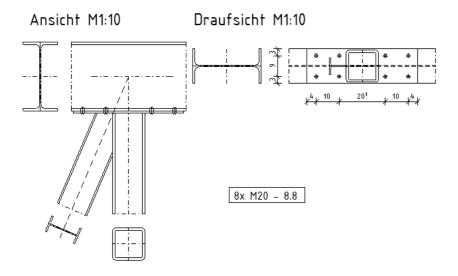
Biegung und Normalkraft

7.68 kN/cm = aw * fvw,d = 3.5 mm(aw) * 3.5 mm * Fw,Ĕd,Ň 219.4 N/mm² = 251.5 N/mm² Fw,Rd = 7.68 kN/cm / Fw,Rd = $8.80 \text{ kN/cm } \eta = 0.87 < 1$ Fw,Ed,N

Kombinierte Beanspruchung Fw,Ed = 7.68 kN/cm 3.5 mm(aw) * 3.5 mm * = = 219.4 N/mm² aw * fvw,d = 3.5 m 7.68 kN/cm / Fw,Rd = 3.5 mm Fw,Rd = 251.5 N/mm² $8.80 \text{ kN/cm } \eta = 0.87 < 1$ Fw,Ed

Nachweis des Profils Querschnittsklasse

Nachweis nach (6.1)


220.1 N/mm² / 355.0 N/mm² 0.62 < 1= η = σ_{d} σ_{Rd} **T**d = 0.0 N/mm² / τ Rd = 205.0 N/mm² η = 0.00 < 1220.1 N/mm² / 0.62 < 1355.0 N/mm² σ_{dV} σ Rd η =

2.16 D33 – SHS140x10 - IPE300 – IPE140 Stahlbaufachwerkknoten

2.16.1 Statisches System

D33 SHS140x10 - IPE300 - IPE140 Stahlbaufachwerkknoten

SHS Profil an Kopfplatte mit HV Naht

2.16.2 Maßgebende Belastung

Max. Zugkraft Diagonale 511,8 kN (Variante 2)

Hieraus ergibt sich auf den Anschluss folgende Beanspruchung:

$$H = 511.8 \text{ x sin}(23) = 200 \text{ kN}$$

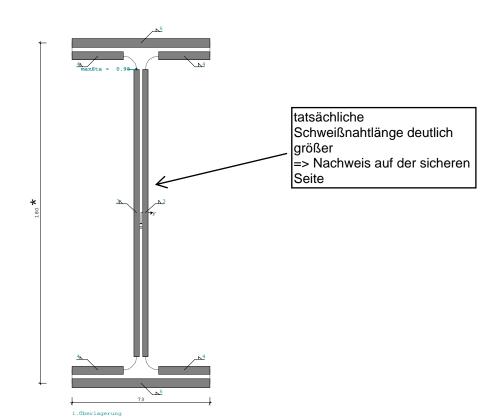
 $V = 511.8 \text{ x cos}(23) = 472 \text{ kN}$

Die resultierende vertikale Kraft aus der Diagonalen wird auf den SHS140x10 Stiel übertragen. Bei dem oberen Anschluss wirken auf den Schraubanschluss nur horizontale Schnittkräfte. Bei dem unteren Schraubanschluss wirken vertikale (Zug) und horizontale Schnittkräfte.

2.16.3 Schnittgrößen und Bemessung

- Siehe Nachweis D32 -

Projekt: IK-H OP Erweiterung Position: Heft 1 - Fortsetzung 2 - Zu Detail D33 Friesenweg 5 E Tel.: 040/8891670


Diagonale 28.07.2023 Fax: 040/88916767 Hamburg Seite: 1

Position: Heft 1 - Fortsetzung 2 - Zu Detail D33 Diagonale

Schweißnaht (x64) ST5 02/2022 (Frilo R-2023-1/P06)

Maßstab 1:2

22763

*Modifiziertes Profil tatsächlich IPE140 mit schrägem Schnittverlauf im Steg

```
System
                           1993
              : DIN EN
Norm
Profil
              : I 180 (sd)
                         18.31 cm<sup>2</sup>
                                                   962.8 \text{ cm4 lz} =
                                                                              45.0 cm4
                                                                               7.0 mm
                 h =
                         180.0 mm tw =
                                                      4.7 \text{ mm} \text{ r} =
                 b =
                          73.0 mm
                                      tf
                                                      6.9 mm
Blechdicke: t
                          10.0 mm
              : S355
                              fy
fvw,d
Stahl
                                           355.0 \text{ fu} =
                                                           490.0 \text{ N/mm}^2 \text{ y}_{M0} =
                                           251.5 N/mm<sup>2</sup> \beta_W = 0.90 \dot{\gamma}_{M2} =
\tau_W wird mit V_Z / A_{WZ} und V_Y / A_{Wy} berechnet
Geometrie der Kehlnähte
         152.2 mm aw = 3.0 mm Stegnaht beidseitig
Iw =
          73.0 mm aw = 5.0 mm Flanschnaht außen
lw =
          27.2 \text{ mm aw} = 4.0 \text{ mm}
                                       Flanschnaht innen
Schweißnahtfläche
                                 Flächenmomente 2. Grades der Schweißnähte
              20.78 cm2
AW =
                                 lw,y
                                               1067.77 cm4
               9.13 cm2
                                                  58.49 cm4 lw,yz
                                                                                 0.00 cm4
Aw_{r}z =
                                 lw,z
              11.64 cm2
Aw,y =
```

Anscl	hlußschnittkräfte y F-fach					
	Lastfall	Nd[kN]	Myd[kNm] Vzd[kN]		Mzd[kNm]	Vyd[kN]
1	1.Überlagerung	512.00	0.00	0.00	0.00	0.00

Ergebnisse Nr 1		1	1.Überlage	rung			
N=	512.00 M _y =		$0.00 \ V_z =$	$0.00 M_z =$	0.00 V _y =	0.00 [d,kN,kNm]	

Friesenweg 5 E

Tel.: 040/8891670

Projekt: IK-H OP Erweiterung Position: Heft 1 - Fortsetzung 2 - Zu Detail D33 Diagonale 28.07.2023 S

Seite: 2

22763 Hamburg Fax: 040/88916767

Spannungen an den Schweißnähten

σwd = 246.4 N/mm²

 σ_{WdV} = 246.4 N/mm² Stegnaht beidseitig

Nachweis der Kehlnähte nach 4.5.3.3 Vereinfachtes Verfahren

Biegung und Normalkraft

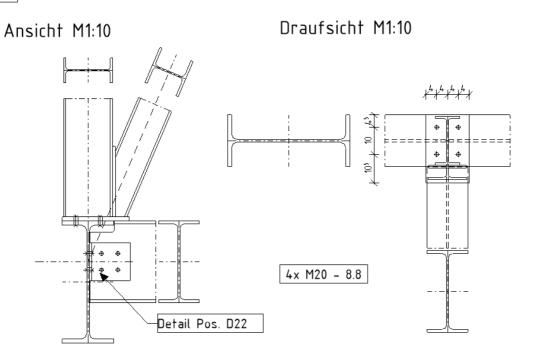
Fw,Ed,N = 7.39 kN/cm = 3.0 mm(aw) * 246.4 N/mm² Fw,Rd = aw * fvw,d = 3.0 mm * 251.5 N/mm² Fw,Ed,N = 7.39 kN/cm / Fw,Rd = 7.54 kN/cm η = 0.98 < 1

Kombinierte Beanspruchung

Nachweis des Profils Querschnittsklasse

1

Nachweis nach (6.1)


$\sigma_{\rm d}$	=	279.7 N/mm ² /	σ Rd	=	355.0 N/mm ²	η =	0.79 < 1
τd	=	0.0 N/mm ² /	τ Rd	=	205.0 N/mm ²	η =	0.00 < 1
σdV	=	279.7 N/mm ² /	σ_{Rd}	=	355.0 N/mm ²	n =	0.79 < 1

2.17 D34 – IPE450 - IPE180 – IPE300 – HEA140 Stahlbaufachwerkknoten

2.17.1 Statisches System

D34 IPE450 – IPE180 – IPE300 – HEA140 Stahlbaufachwerkknoten

2.17.2 Maßgebende Belastung

Max. Zugkraft Diagonale 422,6 kN (Variante 2)

Hieraus ergibt sich auf den Anschluss folgende Beanspruchung:

H = 422,6 x sin(23) = 166 kNV = 422,6 x cos(23) = 389 kN

Die resultierende vertikale Kraft aus der Diagonalen wird auf den IPE180 Stiel übertragen. Bei dem unteren Schraubanschluss wirken vertikale (Zug) und horizontale Schnittkräfte.

2.17.3 Schnittgrößen und Bemessung

Maßgebende Geometrie Platte:

Randabstände: $e_1 = 40 \text{ mm}$ Dicke Flansch IPE450: t = 14,6 mm

Bemessungswiderstände der Schrauben (M20 – 8.8):

Grenzabscherkraft je Scherfuge:

 $F_{v,Rd} = 94,1 \text{ kN}$

Grenzzugkraft je Schraube:

 $F_{t,Rd} = 141,1 \text{ kN}$

Grenzlochleibungskraft je Schraube in Steg IPE450(S355):1,361 x 87,27 kN x 14,6/10 = $F_{b,Rd}$ = 173,4 kN

Grenzdurchstanzkraft je Schraube in Steg (S355): 232,6 x 14,6 / 10 =

 $B_{p,Rd} = 339,6 \text{ kN}$

Nachweise der Schraubenverbindung:

 $\label{eq:burchstanzen} Durchstanzen \; Stirnplatte: \qquad \qquad F_{t,Ed} = \qquad \qquad 389/4 = 98 \; kN \qquad \qquad < B_{p,Rd} \; = 339,6 \; kN$

Nachweis Schweißnaht HEA140 an Stirnplatte und Fußplatte

Siehe Position D32

Nachweis Schweißnaht Stirnplatte an IPE180 Flansch

$$V = 422,6 \times \cos(23) = 389 \text{ kN}$$

Grenzkraft pro Längeneinheit

$$F_{\text{w,Rd}} = \frac{f_{\text{u}} \cdot 2 \cdot a}{\beta_{\text{w}} \cdot \gamma_{\text{M2}} \cdot \sqrt{3}} = \frac{36 \cdot 2 \cdot 0.4 \text{ cm}}{0.8 \cdot 1.25 \cdot \sqrt{3}} = 16.63 \text{ kN/cm}$$

Vertikale Schweißnaht IPE 180 Flansch an Stirnplatte

$$V_{||,Ed} = \frac{V_{Ed}}{l_w} = \frac{389 \text{ kN}}{26 \text{ cm}} = 15.0 \frac{\text{kN}}{\text{cm}} < F_{w,Rd}$$

Nachweis Schweißnaht IPE180 an Fußplatte

$$H = 422,6 \text{ x sin}(23) = 166 \text{ kN}$$

 $V = 422,6 \text{ x cos}(23) = 389 \text{ kN}$

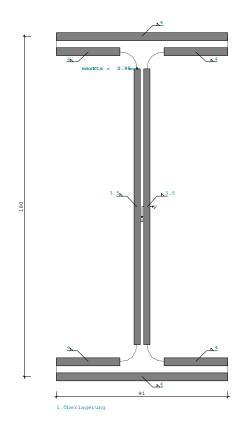
→ Siehe EDV-Berechnung folgende Seiten

Hamburg

Friesenweg 5 E Tel.: 040/8891670 Projekt: IK-H OP Erweiterung Position: Heft 1 - Fortsetzung 2 - Zu Detail D34

Stütze 28.07.2023

Seite: 1


Position: Heft 1 - Fortsetzung 2 - Zu Detail D34 Stütze

Fax: 040/88916767

Schweißnaht (x64) ST5 02/2022 (Frilo R-2023-1/P06)

Maßstab 1:2

22763

System : DIN EN 1993 Norm Profil : IPE 180 A = $23.90 \text{ cm}^2 \text{ ly} =$ 1320.0 cm4 lz =101.0 cm4 h = 180.0 mm tw = 5.3 mm r =9.0 mm 91.0 mm tf = 8.0 mm b Blechdicke: t 10.0 mm : S355 fy fvw,d $490.0 \text{ N/mm}^2 \text{ ymo} =$ Stahl 355.0 fu == 251.5 N/mm² $\beta_W = 0.90 \dot{\gamma}_{M2} =$ τ_w wird mit V_z / A_{wz} und V_y / A_{wy} berechnet Geometrie der Kehlnähte 146.0 mm aw = 3.5 mm Stegnaht beidseitig lw = 91.0 mm aw = 4.0 mm Flanschnaht außen 33.8 mm aw = 4.0 mm Flanschnaht innen lw = Schweißnahtfläche Flächenmomente 2. Grades der Schweißnähte 22.92 cm2 10.22 cm2 1135.56 cm4 100.45 cm4 lw,yz = Aw = Iw,y = $Aw_{,Z} =$ 0.00 cm4 lw,z 12.70 cm2 Aw,y =

Ansc	hlußschnittkräfte y ғ-fach					
	Lastfall	Nd[kN]	Myd[kNm] Vzd[kN]		Mzd[kNm]	Vyd[kN]
1	1.Überlagerung	390.00	0.00	170.00	0.00	0.00

Erge	bnisse Nr	1	1.Überlage	erung		
N=	390.00 M _y =		0.00 V _z =	170.00 Mz=	$0.00 V_y =$	0.00 [d,kN,kNm]

Friesenweg 5 E

22763

Tel.: 040/8891670 Fax: 040/88916767 Projekt: IK-H OP Erweiterung Position: Heft 1 - Fortsetzung 2 - Zu Detail D34

Stütze 28.07.2023

Seite: 2

Spannungen an den Schweißnähten

170.2 N/mm² σ wd

Hamburg

 $170.0 \text{ kN / Awz} = 10.2 \text{ cm}^2 = 166.3 \text{ N/mm}^2$ Twd Vzd

238.0 N/mm² Stegnaht beidseitig σ wdV

η = η = σ wd 0.68 < 10.66 < 1 τ wd 238.0 N/mm² / $\sigma_{\text{W.Rd}} = 251.5 \text{ N/mm}^2$ 0.95 < 1η = σ_{wdV}

Nachweis der Kehlnähte nach 4.5.3.3 Vereinfachtes Verfahren

Biegung und Normalkraft

 $5.96 \text{ kN/cm} = 3.5 \text{ mm(aw)} * 170.2 \text{ N/mm}^2$ aw * fvw,d = 3.5 mm * 251.5 N/mm² Fw,Ĕd,Ň Fw,Rd = 5.96 kN/cm / Fw,Rd = 8.80 kN/cm n = 0.68 < 1Fw,Ed,N

Schubbeanspruchung Fw,Ed,Vz = 170.00 kN

 $Awz * fvw,d = 1022.0 \text{ mm}^2 * 251.5 \text{ N/mm}^2$ Fw,Rd

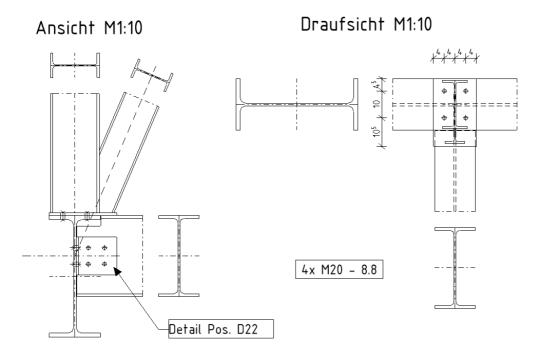
 $/ Fw_{r}Rd = 257.00 \text{ kN} \quad \eta = 0.66 < 1$ $Fw_{i}Ed_{i}Vz = 170.00 \text{ kN}$

Kombinierte Beanspruchung

= 3.5 mm(aw) * = 3.5 mm * = 8.33 kN/cm = aw * fvw,d 238.0 N/mm² 251.5 N/mm² Fw,Ed Fw,Rd 8.33 kN/cm / Fw,Rd = $8.80 \text{ kN/cm } \eta = 0.95 < 1$ Fw,Ed

Nachweis des Profils Querschnittsklasse

Nachweis nach (6.1)


0.46 < 1163.2 N/mm² / 355.0 N/mm² σ Rd = η = η = 199.8 N/mm² / 205.0 N/mm² 0.97 < 1**T**d = τ Rd = 382.5 N/mm² / = 355.0 N/mm² η = 1.08 > 1 ! σ_{dV} = σ Rd

2.18 D35 – IPE450 - IPE180 – IPE300 – IPE140 Stahlbaufachwerkknoten

2.18.1 Statisches System

D35 | IPE450 - IPE180 - IPE300 - IPE140 Stahlbaufachwerkknoten

Der Diagonale IPE140 wird an den Flansch des IPE180 geschweißt Nachweis durch AN

2.18.2 Maßgebende Belastung

Max. Zugkraft Diagonale 328,5 kN (Variante 2)

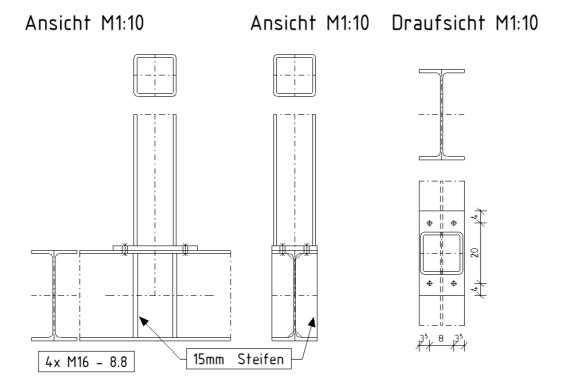
Hieraus ergibt sich auf den Anschluss folgende Beanspruchung:

$$H = 328,5 \text{ x sin}(23) = 129 \text{ kN}$$

 $V = 328,5 \text{ x cos}(23) = 303 \text{ kN}$

Die vertikale Kraft wird über die Diagonale auf den IPE180 Stiel übertragen. Es wirken aus der Diagonalen auf den Schraubanschluss vertikale Zugkräfte und horizontale Schnittkräfte.

2.18.3 Schnittgrößen und Bemessung


- Siehe Nachweis D34 -

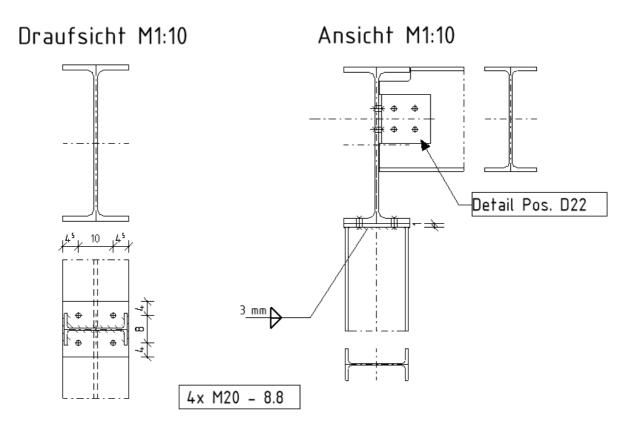
2.19 D36 – SHS140x10 – IPE300 Stahlbaufachwerkknoten

2.19.1 Statisches System

D36 SHS140x10 - IPE300 Stahlbaufachwerkknoten

Das SHS140x10 Profil wird mit einer Druckkraft von max. 1014,7 kN belastet

Der Schraubanschluss der IPE180 Stütze an den Flansch des IPE450 erfolgt konstruktiv mit 4 Schrauben M16-8.8. Der IPE450 wird in Verlängerung der SHS140x10 Wände mit 15mm Steifen verstärkt

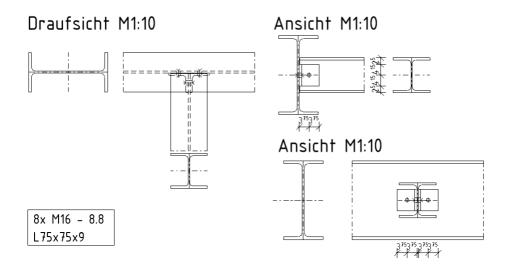

Schweißnähte 5mm Kehlnaht an den Steifen und umlaufend um das SHS Profil.

2.20 D37 – IPE450 – IPE300 – IPE180 Stahlbaufachwerkknoten

2.20.1 Statisches System

D37 IPE450 - IPE300 - IPE180 Stahlbaufachwerkknoten

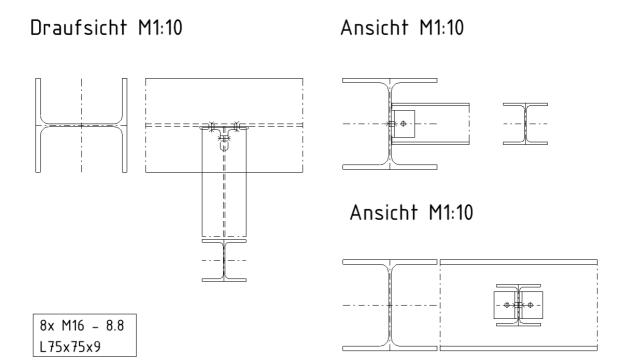
Der IPE180 wird mit einer Druckkraft von max. 127,4 kN belastet


Der Anschluss der IPE180 Stütze an den Flansch des IPE450 erfolgt konstruktiv mit 4 Schrauben M20-8.8 Anschluss Kopfplatte an die Stütze (IPE180) umlaufende Kehlnaht beidseitig 3 mm.

2.21 D38 – HEA140 an IPE300 Stahlbauanschluss

2.21.1 Statisches System

D38 HEA140 an IPE300 Stahlbauanschluss

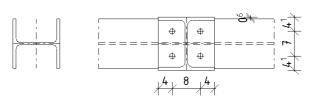

Der Anschluss erfolgt konstruktiv, ohne Nachweis

2.22 D39 - HEA140 an HEA300 Stahlbauanschluss

2.22.1 Statisches System

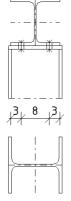
D39 HEA140 an HEA300 Stahlbauanschluss

Der Anschluss erfolgt konstruktiv, ohne Nachweis



2.23 D40 - HEA160 an HEA140 Stahlbauanschluss

2.23.1 Statisches System


D40 HEA160 an HEA140 Stahlbauanschluss

Draufsicht M1:10

Ansicht M1:10

2.23.2 Maßgebende Belastung

Auflagerkräfte

Auflagerkräfte - charakteristisch je Lastfall

Lager	x [m]	Lf	Ew	R× [kN]	Rz [kN]	My [kNm]	Ry [kN]	Mz [kNm]
Fuss	0.00	Eigengewicht	99	-1.0	-	_	_	-
		Lasten mit Zus 110	9	-	3.3	-	3.3	-
Kopf	3.30	Lasten mit Zus 110	9	-	3.3	-	3.3	-

Auflagerkräfte - Bemessungswerte

Lager	x [m]	Lk	Rx [kN]	Rz [kN]	M _y [kNm]	R _y [kN]	Mz [kNm]
Kopf Fuss		Lfk 1 Lfk 1	- -1.4	4.9 4.9	-	5.0 5.0	-

Übersicht maßgeblicher Lastfallkombinationen

Lfk	Bemessungssituation	[Lastfall:Faktor]
1 5	0,	Eigengewicht:1.35 + 1:1.50 + 2:1.50 Eigengewicht:1.00 + 1:1.00 + 2:1.00

Aus Heft 1 - Stahlbau Fortsetzung 1

2.23.3 Schnittgrößen und Bemessung

Maßgebende Geometrie Platte:

Randabstände HEA140: Flanschdicke HEA140: $e_1 = 30 \text{ mm}$

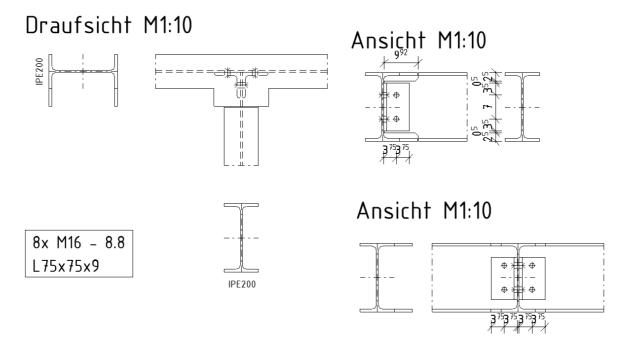
 $t = 8,5 \, mm$

Bemessungswiderstände der Schrauben (M16 - 8.8):

Grenzabscherkraft je Scherfuge: $F_{v,Rd} = 60,3 \text{ kN}$

Grenzlochleibungskraft je Schraube in Flansch (S355): 1,361 x 53,33 kN x 8,5 / 10 = F_{b,Rd} = 61,7 kN

Nachweise der Schraubenverbindung:


Lochleibung: $F_{v,res,Ed} =$ 7,1 kN $< F_{b,Rd} = 61,7 \text{ kN}$ Abscheren der Schraube: $F_{v,res,Ed} =$ 7,1 kN $< F_{v,Rd} = 60,3 \text{ kN}$

2.24 D41.1 - IPE200 an IPE200 Stahlbauanschluss

2.24.1 Statisches System

D41.1 IPE200 an IPE200 Stahlbauanschluss

2.24.2 Maßgebende Belastung

Schnittgrössen bei x							
Feld	1	x0 =	0.000 m max Myd =	0.00 kNm zug Vz	=	28.34 kN	
			min Myd =	0.00 kNm zug Vz	=	28.34 kN	
			max Vzd =	59.28 kN zug My	=	0.00 kNm	
			min Vzd =	20.99 kN zug My	=	0.00 kNm	

Aus Heft 1 – Stahlbau Fortsetzung 1 Belastung aus Pos. 41.2 maßgebend

2.24.3 Schnittgrößen und Bemessung

→ Siehe Nachweis Pos. D41.2 folgende Seiten

Hamburg

Friesenweg 5 E

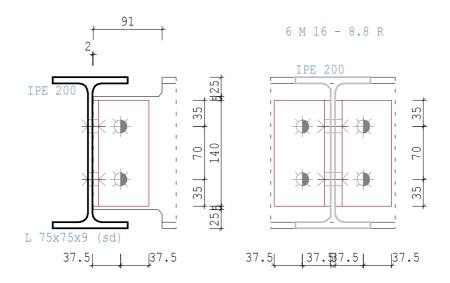
Tel.: 040/8891670 Fax: 040/88916767 Projekt: IK-H OP Erweiterung Position: Heft 1 Fortsetzung 2 - Pos. D41.1 und

D41.2 21.07.2023

Seite: 1

Position: Heft 1 Fortsetzung 2 - Pos. D41.1 und D41.2

Schraubanschlüsse Stahl (x64) ST9 01/2021F (Frilo R-2023-1/P06)


TRÄGERANSCHLUß

DIN EN 1993

Grafik

22763

Maßstab 1:5

Kennwerte

Profil		h	tw	b	tf	r	(mm)
Hauptträger Nebenträger	IPE 200 IPE 200	200.0 200.0	5.6 5.6	100.0 100.0	8.5 8.5	12.0 12.0	
Winkel	L 75x75x9 (sd)	75.0	9.0	75.0	0.0	10.5	

Winkel

Länge = 140.0 mm

Uw = 5.0 mmVersatz = 2.0 mm

mm Abstand von OK Ausklinkung

Ausklinkung oben =

oben = 25.0 mm

unten = 25.0 mm

Länge = 91.0 mm mit Brennschnitt

Stahl	fy N/mm2	fu N/mm2	γмо	γм2	Schraube	fyb N/mm2	fub N/mm2	d0 mm	
S355	355	490	1.00	1.25	M 16 - 8.8 R	640	800	17.0	Gewinde in Fuge

Schraubenbild	p1(Mitte)	e1(Rand)	e2(Rand)	p2(Mitte)	(mm)
Hauptträger	70.0	65.0			
Winkel-Hauptträger	70.0	35.0	37.5		
Winkel-Nebenträger	70.0	35.0	37.5		
Nebenträger	70.0	40.0	35.5		

	Schraubenreihen	Schrauben je Reihe	gesamt
Winkel-Hauptträger Winkel-Nebenträger	1 1	2 2	2 2

Nachweis mit Vd = 60.00 kN

Hauptträger - Winkel: 1 - schnittige Verbindung mit 2 * 2 Schrauben

V _{z,d} kN	I _p cm2	Myv,d kNcm	T _d kN	Tz,d kN	T _{y,d} kN
30.0	24.5	112.5	22.0	15.0	16.1

Hamburg

Friesenweg 5 E

22763

Tel.: 040/8891670 Fax: 040/88916767 Projekt: IK-H OP Erweiterung Position: Heft 1 Fortsetzung 2 - Pos. D41.1 und

D41.2

21.07.2023 Seite: 2

Lochleibung	Lage Richtung	αd	k1	F _{b,Rd}	T _d kN	η
Profil	Rand,z	1.00	2.50	87.8	15.0	0.17
	Rand,y	1.00	2.50	87.8	16.1	0.18
	Mitte,z	1.00	2.50	87.8	15.0	0.17
Winkel	Rand,z	0.69	2.50	96.8	15.0	0.15
	Rand,y	0.74	2.50	103.8	16.1	0.15
	Mitte,z	1.00	2.50	141.1	15.0	0.11

Abscheren	αν	Fv,Rd kN	T _d kN	η	
	0.60	60.3	22.0	0.36	

Nebenträger - Winkel: 2 - schnittige Verbindung mit 2 Schrauben

Vz,d	I _p	M _{yv,d}	T _d	Tz,d	T _{y,d}
kN	cm2	kNcm	kN	kN	kN
60.0	24.5	225.0	44.0	30.0	

Lochleibung	Lage Richtung	αd	k1	F _{b,Rd}	T _d k N	η
Profil	Rand,z	0.78	2.50	68.9	30.0	0.44
	Rand,y	0.70	2.50	61.1	32.1	0.53
	Mitte,z	1.00	2.50	87.8	30.0	0.34
Winkel	Rand,z	0.69	2.50	193.7	30.0	0.15
	Rand,y	0.74	2.50	207.5	32.1	0.15
	Mitte,z	1.00	2.50	282.2	30.0	0.11

Abscheren	αν	Fv,Rd kN	T _d kN	η	
	0.60	120.6	44.0	0.36	

Nachweis der Ausklinkung des Nebenträgers

 $h_{red} = 150.0 \text{ mm}$ S 5.6 mm QKL = 93.0 mm $V_{zd} =$ 60.0 kN $\dot{M}_{yd} =$ -5.6 kNm = 157.5 cm4 Sy = 15.8 cm3 Α 8.4 cm2 = 265.7 N/mm2 = 107.1 N/mm2 τ $\sigma_{\text{vgl}} = 265.7 \text{ N/mm2}$ $\sigma_{Rd} = 355.0 \text{ N/mm2}$ = 0.75 <= 1

Nachweis des Winkels

9.0 mm = 140.0 mm S = ys 37.5 mm V_{zd} = 30.0 kN Myd = 1.1 kNm = 205.8 cm4Sy = 22.0 cm3 ly = 38.3 N/mm2 σ τ = 35.7 N/mm261.9 N/mm2 $\sigma_{Rd} = 355.0 \text{ N/mm}^2$ σvgl = 0.17 <= 1

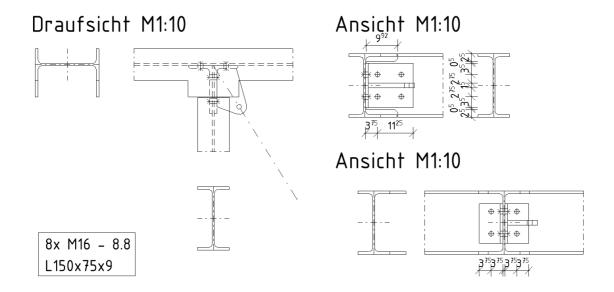
Blockversagen des Winkels am Nebenträger

Anv = 7.2 cm 2 Ant = 2.6 cm 2Veff,2,Rd = 197.8 kN η = 0.15 <= 1

Blockversagen des Nebenträgers

Anv = 4.7 cm2 Ant = 1.5 cm2 Veff,2,Rd = 126.6 kN η = 0.47 <= 1

maximale Auslastung


Ausklinkung $\eta = 0.75 <= 1$

2.25 D41.2 – IPE200 an IPE200 Stahlbauanschluss

2.25.1 Statisches System

D41.2 IPE200 an IPE200 Stahlbauanschluss

2.25.2 Maßgebende Belastung

Schni	Schnittgrössen bei x											
Feld	1	x0 =	0.000 r	m max Myd min Myd max Vzd min Vzd	= =	0.00 kNr 0.00 kNr 48.25 kN 8.62 kN	n zug Vz zug My	=				

Aus Heft 1 - Stahlbau Fortsetzung 1

2.25.3 Schnittgrößen und Bemessung

→ Siehe EDV-Berechnung folgende Seiten

Nachweis der Schweißnaht:

Lasten aus Zugverband $Z_{Ed} = 32,4$ kN (vgl. Heft 1 Fortsetzung 1 S. 229) Winkel ca. 32°

- \Rightarrow H_{Ed} = 32,4 kN x sin(32°) = 17,2 kN (Fahnenblech an Kopfplatte)
- \Rightarrow V_{Ed} = 32,4 kN x cos(32°) = 27,5 kN (Fahnenblech an Steg HEA160)

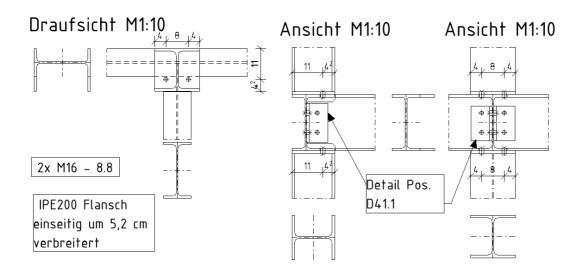
Grenzkraft pro Längeneinheit

$$F_{\text{w,Rd}} = \frac{f_{\text{u}} \cdot 2 \cdot a}{\beta_{\text{w}} \cdot \gamma_{\text{M2}} \cdot \sqrt{3}} = \frac{36 \cdot 2 \cdot 0.3 \text{ cm}}{0.8 \cdot 1.25 \cdot \sqrt{3}} = 12.47 \text{ kN/cm}$$

Schweißnaht an kurzem Schenkel L-Winkel

$$V_{||,Ed} = \frac{V_{Ed}}{l_w} = \frac{17,2 \text{ kN}}{5 \text{ cm}} = 3,44 \frac{\text{kN}}{\text{cm}} < F_{w,Rd}$$

Schweißnaht an langem Schenkel L-Winkel


$$V_{||,Ed} = \frac{V_{Ed}}{l_w} = \frac{27.5 \text{ kN}}{10 \text{ cm}} = 2,75 \frac{\text{kN}}{\text{cm}} < F_{w,Rd}$$

2.26 D42.1 - HEA160 an IPE200 Stahlbauanschluss

2.26.1 **Statisches System**

D42.1 HEA160 an IPE200 Stahlbauanschluss

2.26.2 Maßgebende Belastung

Auflagerkräfte

Auflagerkräfte - charakteristisch je Lastfall

Lager	x [m]	Lf	Ew	Rx [kN]	Rz [kN]	My [kNm]	Ry [kN]	Mz [kNm]
Fuss	0.00	Eigengewicht Lf 1 Lf 2	99 99 1	-1.0 -41.0 -68.0	-	-	-	-
Kopf	3.30	Lasten mit Zus 110 Lasten mit Zus 110	9	-08.0	3.3 3.3	-	3.3 3.3	-

Auflagerkräfte - Bemessungswerte

Lager	x [m]	Lk	R _x [kN]	Rz [kN]	M _y [kNm]	R _y [kN]	M _z [kNm]
Kopf	3.30	Lfk 2	_	4.9	_	5.0	_
Fuss	0.00	Lfk 1	-158.7	3.0	-	3.0	-
		Lfk2	-128.1	4.9	_	5.0	-

Übersicht maßgeblicher Lastfallkombinationen

Lfk	Bemessungssituation	[Lastfall:Faktor]
1	ständig/vorübergehend	Eigengewicht:1.35 + 1:1.35 + 2:1.50 + 3:0.90 + 4:0.90
2	ständig/vorübergehend	Eigengewicht:1.35 + 1:1.35 + 2:1.05 + 3:1.50 + 4:1.50
12	charakteristisch	Eigengewicht:1.00 + 1:1.00 + 2:0.70 + 3:1.00 + 4:1.00

Aus Heft 1 - Stahlbau Fortsetzung 1

2.26.3 Schnittgrößen und Bemessung

Maßgebende Geometrie Platte:

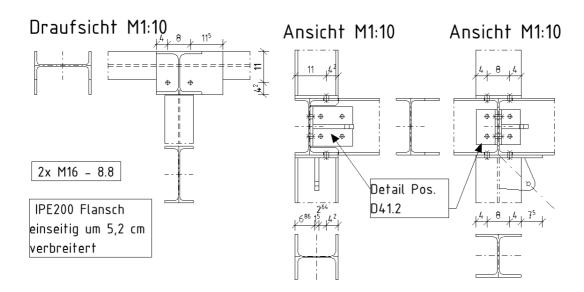
Randabstände:

 $e_1 = 40 \text{ mm}$ Flanschdicke IPE200: $t = 8,5 \, mm$

Bemessungswiderstände der Schrauben (M16 – 8.8):

Grenzabscherkraft je Scherfuge: $F_{v,Rd} = 60,3 \text{ kN}$ Grenzlochleibungskraft je Schraube in Flansch (S355): 1,361 x 85,33 kN x 8,5 / 10 = $F_{b,Rd} = 98,7 \text{ kN}$

Nachweise der Schraubenverbindung:


Lochleibung: $F_{v,res,Ed} = 5/2 = 2.5 \text{ kN}$ $< F_{b,Rd} = 98.7 \text{ kN}$ Abscheren der Schraube: $F_{v,res,Ed} = 5/2 = 2.5 \text{ kN}$ $< F_{v,Rd} = 60.3 \text{ kN}$

2.27 D42.2 - HEA160 an IPE200 Stahlbauanschluss

2.27.1 Statisches System

D42.2 HEA160 an IPE200 Stahlbauanschluss

2.27.2 Maßgebende Belastung

Auflagerkräfte

Auflagerkräfte - charakteristisch je Lastfall

Lager	x [m]	Lf	Ew	Rx [kN]	Rz [kN]	My [kNm]	Ry [kN]	Mz [kNm]
Fuss	0.00	Eigengewicht Lf 1	99 99	-1.0 -41.0	-	-	-	- -
Kopf	3.30	Lf 2 Lasten mit Zus 110 Lasten mit Zus 110	1 9 9	-68.0 - -	3.3 3.3	-	3.3 3.3	-

Auflagerkräfte - Bemessungswerte

_	_						
Lager	x [m]	Lk	R _x [kN]	Rz [kN]	M _y [kNm]	R _y [kN]	Mz [kNm]
Kopf	3.30	Lfk 2	-	4.9	-	5.0	-
Fuss	0.00	Lfk1	-158.7	3.0	-	3.0	-
		Lfk 2	-128.1	4.9	_	5.0	_

Übersicht maßgeblicher Lastfallkombinationen

Lfk	Bemessungssituation	[Lastfall:Faktor]
1	ständig/vorübergehend	Eigengewicht:1.35 + 1:1.35 + 2:1.50 + 3:0.90 + 4:0.90
2	ständig/vorübergehend	Eigengewicht:1.35 + 1:1.35 + 2:1.05 + 3:1.50 + 4:1.50
12	charakteristisch	Eigengewicht:1.00 + 1:1.00 + 2:0.70 + 3:1.00 + 4:1.00

Aus Heft 1 – Stahlbau Fortsetzung 1

+ Windlasten aus Vertikalem Verband

 $H_{Ed} = 1.5 * 10.6 \text{ kN} = 15.9 \text{ kN}$ $V_{Ed} = 1.5 * 10.6 / \tan(33) = 24.5 \text{ kN}$

2.27.3 Schnittgrößen und Bemessung

Maßgebende Geometrie Platte:

Randabstände:

 $e_1 = 40 \text{ mm}$

Flanschdicke IPE200:

t = 8,5 mm

Bemessungswiderstände der Schrauben (M16 - 8.8):

Grenzabscherkraft je Scherfuge: $F_{v,Rd} = 60,3 \text{ kN}$

Grenzlochleibungskraft je Schraube in Flansch (S355): 1,361 x 85,33 kN x 8,5 / $10 = F_{b,Rd} = 98,7$ kN

Nachweise der Schraubenverbindung:

Lochleibung: $F_{v,res,Ed} = 15,9/2 = 8 \text{ kN}$ $< F_{b,Rd} = 98,7 \text{ kN}$ Abscheren der Schraube: $F_{v,res,Ed} = 15,9/2 = 8 \text{ kN}$ $< F_{v,Rd} = 60,3 \text{ kN}$

Nachweis der Schweißnaht:

 H_{Ed} = 15,9 kN (Fahnenblech an Kopfplatte) V_{Ed} = 24,5 kN (Fahnenblech an Steg HEA160)

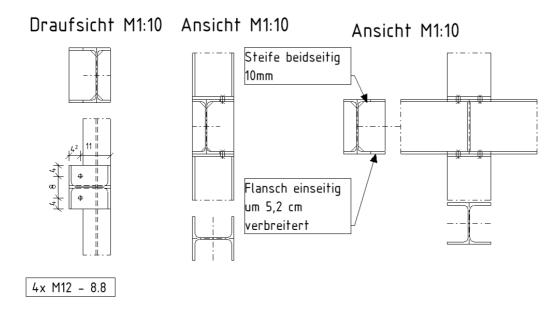
Grenzkraft pro Längeneinheit

$$F_{\text{w,Rd}} = \frac{f_{\text{u}} \cdot 2 \cdot a}{\beta_{\text{w}} \cdot \gamma_{\text{M2}} \cdot \sqrt{3}} = \frac{36 \cdot 2 \cdot 0.3 \text{ cm}}{0.8 \cdot 1.25 \cdot \sqrt{3}} = 12.47 \text{ kN/cm}$$

Horizontale Schweißnaht Fahnenblech an Kopfplatte

$$V_{||,Ed} = \frac{V_{Ed}}{l_w} = \frac{15,9 \text{ kN}}{9 \text{ cm}} = 1,77 \frac{\text{kN}}{\text{cm}} < F_{w,Rd}$$

Vertikale Schweißnaht Fahnenblech an Steg HEA160


$$V_{||,Ed} = \frac{V_{Ed}}{l_w} = \frac{24,5 \text{ kN}}{11 \text{ cm}} = 2,23 \frac{\text{kN}}{\text{cm}} < F_{w,Rd}$$

2.28 D42.3 - HEA160 an IPE200 Stahlbauanschluss

2.28.1 Statisches System

D42.3 HEA160 an IPE200 Stahlbauanschluss

Schweißnaht Rippe an IPE200: Schweißnaht Kopf-/Fußplatte an HEA160: Kehlnaht umlaufend 3 mm Kehlnaht Steg beids. 3 mm HV Naht Flansch

2.28.2 Maßgebende Belastung

Auflagerkräfte

Auflagerkräfte - charakteristisch je Lastfall

Lager	x [m]	Lf	Ew	Rx [kN]	Rz [kN]	My [kNm]	Ry [kN]	Mz [kNm]
Fuss	0.00	Eigengewicht Lf 1	99 99	-1.0 -41.0		-	-	-
		Lf 2 Lasten mit Zus 110	1 9	-68.0	3.3	-	3.3	
Kopf	3.30	Lasten mit Zus 110	9	-	3.3	-	3.3	-

Auflagerkräfte - Bemessungswerte

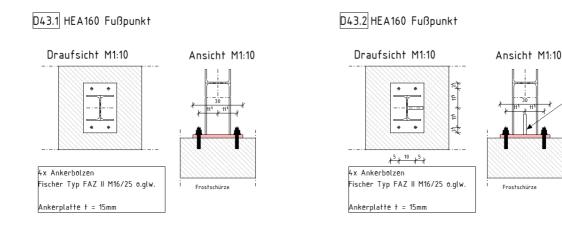
Lager	x [m]	Lk	R _x [kN]	Rz [kN]	M _y [kNm]	R _y [kN]	M _z [kNm]
Kopf	3.30	Lfk2	-	4.9	_	5.0	_
Fuss	0.00	Lfk1	-158.7	3.0	-	3.0	-
		Lfk2	-128.1	4.9	-	5.0	-

Übersicht maßgeblicher Lastfallkombinationen

Lfk	Bemessungssituation	[Lastfall:Faktor]
1	ständig/vorübergehend	Eigengewicht:1.35 + 1:1.35 + 2:1.50 + 3:0.90 + 4:0.90
2	ständig/vorübergehend	Eigengewicht:1.35 + 1:1.35 + 2:1.05 + 3:1.50 + 4:1.50
12	charakteristisch	Eigengewicht:1.00 + 1:1.00 + 2:0.70 + 3:1.00 + 4:1.00

Aus Heft 1 - Stahlbau Fortsetzung 1

2.28.3 Schnittgrößen und Bemessung


- Siehe Nachweis D42.1 -

Anschluss Zugdiagonale

2.29 D43.1 D43.2 – HEA160 Fußpunkt

2.29.1 Statisches System

Schweißnaht Profil an Fußplatte: Kehlnaht umlaufend 3 mm Schweißnaht Fahnenblech für Diagonale 3 mm (Nachweis siehe Pos. D42.2)

2.29.2 Maßgebende Belastung

Auflagerkräfte

Auflagerkräfte - charakteristisch je Lastfall

Lager	x [m]	Lf	Ew	Rx [kN]	Rz [kN]	My [kNm]	Ry [kN]	Mz [kNm]
Fuss	0.00	Eigengewicht Lf 1	99 99	-1.0 -41.0	-	-	-	-
		Lf 2 Lasten mit Zus 110	9	-68.0	3.3	-	3.3	-
Kopf	3.30	Lasten mit Zus 110	9	-	3.3	-	3.3	-

Auflagerkräfte - Bemessungswerte

Lager	x [m]	Lk	R _x [kN]	Rz [kN]	M _y [kNm]	R _y [kN]	M _z [kNm]
Kopf	3.30	Lfk2	-	4.9	_	5.0	-
Fuss	0.00	Lfk1	-158.7	3.0	-	3.0	-
		Lfk2	-128.1	4.9	-	5.0	-

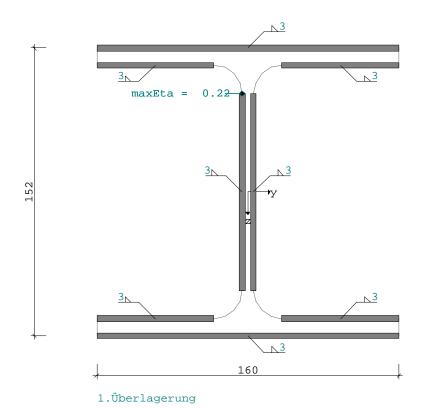
Übersicht maßgeblicher Lastfallkombinationen

Lfk	Bemessungssituation	[Lastfall:Faktor]
1	ständig/vorübergehend	Eigengewicht: 1.35 + 1:1.35 + 2:1.50 + 3:0.90 + 4:0.90
2	ständig/vorübergehend	Eigengewicht:1.35 + 1:1.35 + 2:1.05 + 3:1.50 + 4:1.50
12	charakteristisch	Eigengewicht:1.00 + 1:1.00 + 2:0.70 + 3:1.00 + 4:1.00

Siehe Heft 1 - Stahlbau Fortsetzung 1

2.29.3 Schnittgrößen und Bemessung

→ Siehe EDV-Berechnung folgende Seiten


Projekt: IK-H OP Erweiterung

Friesenweg 5 E Tel.: 040/8891670 Position: Heft 1 - Fortsetzung 2 - Zu Detail D43.1 Fax: 040/88916767 22763 28.07.2023 Hamburg Seite: 1

Position: Heft 1 - Fortsetzung 2 - Zu Detail D43.1

Schweißnaht (x64) ST5 02/2022 (Frilo R-2023-1/P06)

Maßstab 1:2

System 1993 Norm : DIN EN Profil : HE 160 A 38.80 cm² 1670.0 cm4 lz =616.0 cm4 A = ly = h = 152.0 mm tw = 6.0 mm r =15.0 mm 9.0 mm b 160.0 mm tf = = Blechdicke: t 15.0 mm : S355 Stahl fy fvw,d 355.0 fu = $490.0 \text{ N/mm}^2 \text{ ymo} =$ 251.5 N/mm² $\beta_W = 0.90 \dot{\gamma}_{M2} =$ τ_w wird mit V_z / A_{wz} und V_y / A_{wy} berechnet Geometrie der Kehlnähte 104.0 mm aw =3.0 mm Stegnaht beidseitig Iw = 160.0 mm aw = 3.0 mm 3.0 mm Flanschnaht außen lw = Iw = 62.0 mm aw =Flanschnaht innen Schweißnahtfläche Flächenmomente 2. Grades der Schweißnähte Aw = 23.28 cm2 944.85 cm4 lw,y 0.00 cm4 Aw,z =6.24 cm2 lw,z 407.88 cm4 lw,yz 17.04 cm2 Aw,y =

Ansc	hlußschnittkräfte y ғ-fach					
	Lastfall	Nd[kN]	Myd[kNm] Vzd[kN]		Mzd[kNm]	Vyd[kN]
1	1.Überlagerung	130.00	0.00	5.00	0.00	5.00

Ergebnisse Nr 1		1	1.Überlagei	rung		
N=	130.00 My=		0.00 Vz=	5.00 Mz=	0.00 Vy=	5.00 [d,kN,kNm]

Friesenweg 5 E 22763 Fax: 040/88916767 Hamburg

Projekt: IK-H OP Erweiterung Tel.: 040/8891670 Position: Heft 1 - Fortsetzung 2 - Zu Detail D43.1 28.07.2023

Seite: 2

Spannungen an den Schweißnähten

55.8 N/mm² σ wd

5.0 kN / Awz = 6.2 cm² = 5.0 kN / Awy = 17.0 cm² = 56.4 N/mm² Stegnaht beidseitig = 8.0 N/mm² Twd Vzd 2.9 N/mm² **T**wd,Vyd

= σ_{wdV}

251.5 N/mm² 0.22 < 1η = $\eta = 0.03 < 1$ 251.5 N/mm² $\tau_{\text{wd}} =$ 251.5 N/mm² σ w,Rd = $\eta = 0.22 < 1$ σ wdV =

Nachweis der Kehlnähte nach 4.5.3.3 Vereinfachtes Verfahren

Biegung und Normalkraft

Biegung und Normalkrall
Fw,Ed,N = 1.68 kN/cm = 3.0 mm(aw) * 55.8 N/mm²
Fw,Rd = aw * fvw,d = 3.0 mm * 251.5 N/mm²
Fw,Fd N = 1.68 kN/cm / Fw,Rd = 7.54 kN/cm η = 0.22 < 1

Schubbeanspruchung

Fw,Ed,Vz = 5.00 kN

= 624.0 mm² * Fw,Rd Awz * fvw,d 251.5 N/mm²

5.00 kN $/ Fw_{r}Rd = 156.92 \text{ kN} \quad \eta = 0.03 < 1$ Fw,Ed,Vz =

Fw,Ed,Vy = 5.00 kN

 $= 1704.0 \text{ mm}^2 * 251.5 \text{ N/mm}^2$ Fw,Rd =

Awy * fvw,d 5.00 kN Fw,Ed,Vy $/ Fw_{1}Rd = 428.50 \text{ kN} \quad \eta = 0.01 < 1$

Kombinierte Beanspruchung Fw,Ed = 1.69 kN/cm 3.0 mm(aw) * 56.4 N/mm² 3.0 mm * 251.5 N/mm² = aw * fvw.d Fw.Rd =

1.69 kN/cm Fw,Ed / Fw,Rd = 7.54 kN/cm n = 0.22 < 1

Nachweis des Profils Querschnittsklasse

Nachweis nach (6.1)

0.09 < 133.5 N/mm² / 355.0 N/mm² η = σ d σRd 5.9 N/mm² / 205.0 N/mm² η = 0.03 < 1= = Τd τ Rd 35.0 N/mm² / 355.0 N/mm² η = 0.10 < 1 σ_{dV} σ Rd

Ingenieurbüro Wetzel & von Seht www.fischer.de

<u>Bemessungsgrundlagen</u>

<u>Anker</u>

Anker System fischer Bolzenanker FAZ II
Anker Bolzenanker FAZ II 16/5,

65 mm

galvanisch verzinkter Stahl

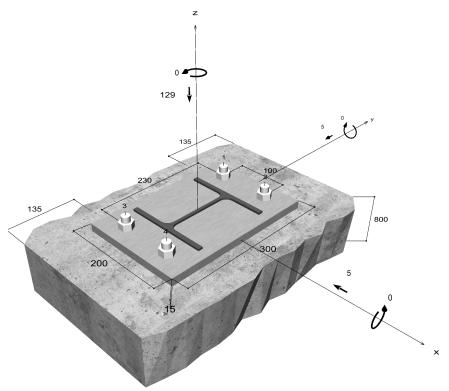
Rechnerische

Verankerungstiefe

Bemessungsdaten Ankerbemessung in Beton nach Europäischer Technischer

Bewertung ETA-05/0069, Option 1,

Erteilungsdatum 24.04.2020


Geometrie / Lasten / Maßeinheiten

mm, kN, kNm

Bemessungswert der Einwirkungen

(inkl. Teilsicherheitsbeiwert Last)

Nicht maßstabsgetreu

Eingabedaten

Bemessungsverfahren EN 1992-4:2018 mechanische Befestigungselemente

Verankerungsgrund C20/25, EN 206

Betonzustand Gerissen, Trockenes Bohrloch

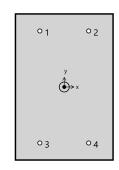
Bewehrung Keine oder normale Bewehrung. Ohne Randbewehrung. Mit

Spaltbewehrung

Bohrverfahren Hammerbohren

Montageart Durchsteckmontage
Ringspalt Ringspalt nicht verfüllt
Belastungsart Statisch oder quasi-statisch
Ankerplattenposition Ankerplattenmaße 200 mm x 300 mm x 15 mm

Profiltyp HEA 160


Bemessungslasten *)

#	N _{Ed} kN	V _{Ed,x} kN	V _{Ed,y} kN	M _{Ed,x} kNm	M _{Ed,y} kNm	M T,Ed kNm	Belastungsart
1	-159.00	-3.00	-3.00	0.00	0.00	0.00	Statisch oder quasi-statisch
2	-129.00	-5.00	-5.00	0.00	0.00	0.00	Statisch oder quasi-statisch

1: Lfk 1 2: Lfk2

Maßgebende Dübellasten

Anker-Nr.	Zugkraft kN	Querkraft kN	Querkraft x kN	Querkraft y kN
1	0.00	1.77	-1.25	-1.25
2	0.00	1.77	-1.25	-1.25
3	0.00	1.77	-1.25	-1.25
4	0.00	1.77	-1.25	-1.25

Max. Betonstauchung : 0.07 %

Max. Betondruckspannung : 2.2 N/mm²

Resultierende Zugkraft : 0.00 kN , X/Y Position (0/0) Resultierende Druckkraft : 129.00 kN , X/Y Position (0/0)

Widerstand der maßgebenden Querlasten.

Nachweis	Last kN	Tragfähigkeit kN	Ausnutzung βν %
Stahlversagen ohne Hebelarm *	1.77	44.00	4.0
Betonausbruch auf der lastabgewandten Seite	3.54	58.24	6.1
Betonkantenbruch	5.59	17.12	32.7

^{*)} Incl. Teilsicherheitsbeiwert Last

13.07.2023

* Ungünstigster Anker

Stahlversagen ohne Hebelarm

$$V_{Ed} \, \leq \, rac{V_{Rk,s}}{\gamma_{Ms}}$$
 ($V_{ exttt{Rd,s}}$)

$$V_{Rk,s} = k_7 \cdot V_{Rk,s}^0 = 1.00 \cdot 55.00 kN = 55.00 kN$$

Gl. (7.35)/ (7.36)

V_{Rk,s} kN	Ϋ́мs	V_{Rd,s} kN	V_{Ed} kN	βvs %
55.00	1.25	44.00	1.77	4.0

Anker-Nr.	β _{Vs} %	Gruppe Nr.	Maßgebendes Beta
1	4.0	1	βvs;1
2	4.0	2	β _{Vs;2}
3	4.0	3	βvs;3
4	4.0	4	βvs;4

Betonausbruch auf der lastabgewandten Seite

$$V_{Ed} \, \leq \, rac{V_{Rk,cp}}{\gamma_{Mc}}$$
 ($V_{ exttt{Rd,cp}}$)

$$V_{Rk,cp} = k_8 \cdot N_{Rk,c} = 3.2 \cdot 27.30kN = 87.36kN$$

Gl. (7.39a)

$$N_{Rk,c} = N_{Rk,c}^0 \cdot rac{A_{c,N}}{A_{c,N}^0} \cdot \Psi_{s,N} \cdot \Psi_{re,N} \cdot \Psi_{ec,N} \cdot \Psi_{M,N}$$

Gl. (7.1)

$$N_{Rk,c} = 18.05kN \cdot \frac{57.525mm^2}{38.025mm^2} \cdot 1.000 \cdot 1.000 \cdot 1.000 \cdot 1.000 = 27.30kN$$

Gl. (7.2)

$$N_{Rk,c}^{0} = k_1 \cdot \sqrt{f_{ck}} \cdot h_{ef}^{1.5} = 7.7 \cdot \sqrt{20.0N/mm^2} \cdot \left(65mm\right)^{1.5} = 18.05kN$$

$$\Psi_{s,N} \; = \; min\Big(1; \; 0.7 + 0.3 \cdot \frac{c}{c_{cr,N}}\Big) \; \; = \; min\Big(1; \; 0.7 + 0.3 \cdot \frac{135mm}{98mm}\Big) \; = \; 1.000 \; \leq \; 1$$

Gl. (7.5)

Gl. (7.4)

$$\Psi_{ec,N} = \frac{1}{1 + \frac{2e_n}{a}} \implies \Psi_{ec,Nx} \cdot \Psi_{ec,Ny} = 1.000 \cdot 1.000 = 1.000 \le 1$$

Gl. (7.6)

$$\Psi_{M,N} = 1.00 \ge 1$$

 $\Psi_{re,N} = 1.000$

Gl. (7.7)

V _{Rk,cp} kN	ү мс	V _{Rd,cp} kN	V Ed kN	β _{V,cp} %
87.36	1.50	58.24	3.54	6.1

13.07.2023

Anker-Nr.	β _{V,cp} %	Gruppe Nr.	Maßgebendes Beta		
1, 2	6.1	1	βv,cp;1		
3, 4	6.1	2	β _{V,cp;2}		

Betonkantenbruch

$$V_{Ed} \, \leq \, rac{V_{Rk,c}}{\gamma_{Mc}}$$
 ($V_{ exttt{Rd,c}}$)

$$V_{Rk,c} = V_{Rk,c}^0 \cdot \frac{A_{c,V}}{A_{c,V}^0} \cdot \Psi_{s,V} \cdot \Psi_{h,V} \cdot \Psi_{\alpha,V} \cdot \Psi_{ec,V} \cdot \Psi_{re,V}$$
 GI. (7.40)

$$V_{Rk,c} \ = \ 18.98 kN \cdot \frac{102.263 mm^2}{82.013 mm^2} \cdot 1.000 \cdot 1.000 \cdot 1.085 \cdot 1.000 \cdot 1.000 \ = \ 25.67 kN$$

$$V_{Rk.c}^0 = k_9 \cdot d_{nom}^{lpha} \cdot l_f^{eta} \cdot \sqrt{f_{ck}} \cdot c_1^{1.5}$$

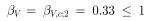
$$V_{Rk,c}^{0} \ = \ 1.7 \cdot \left(16mm\right)^{0.069} \cdot \left(65mm\right)^{0.065} \cdot \sqrt{20.0N/mm^2} \cdot \left(135mm\right)^{1.5} \ = \ 18.98kN^{-1} \cdot \left(13$$

$$\alpha = 0.1 \cdot \sqrt{\frac{l_f}{c_1}} = 0.1 \cdot \sqrt{\frac{65mm}{135mm}} = 0.069 \qquad \beta = 0.1 \cdot \left(\frac{d_{nom}}{c_1}\right)^{0.2} = 0.1 \cdot \left(\frac{16mm}{135mm}\right)^{0.2} = 0.065 \qquad \qquad \text{GL}$$

$$\Psi_{s,V} = 0.7 + 0.3 \cdot \frac{c_2}{1.5c_1} = 0.7 + 0.3 \cdot \frac{203mm}{1.5 \cdot 135mm} = 1.000 \le 1$$

$$\Psi_{h,V} = \max \left(1; \sqrt{\frac{1.5c_1}{h}}\right) = \max \left(1; \sqrt{\frac{1.5 \cdot 135mm}{800mm}}\right) = 1.000 \ge 1$$

$$\Psi_{\alpha,V} = \sqrt{\frac{1}{\left(\cos{\alpha_{V}}\right)^{2} + \left(0.5 \cdot \sin{\alpha_{V}}\right)^{2}}} \ = \ \sqrt{\frac{1}{\left(\cos{26.6}\right)^{2} + \left(0.5 \cdot \sin{26.6}\right)^{2}}} \ = \ 1.085 \ \ge \ 1$$


$$\Psi_{ec,V} = \frac{1}{1 + \frac{2 \cdot e_v}{3 \cdot c_1}} = \frac{1}{1 + \frac{2 \cdot 0mm}{3 \cdot 135mm}} = 1.000 \le 1$$
 GI. (7.47)

$$\Psi_{re,V} = 1.000$$

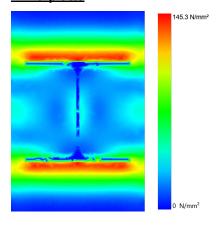
V_{Rk,c} kN	Ү мс	V_{Rd,c} kN	V _{Ed} kN	β _{ν,c} %
25.67	1.50	17.12	5.59	32.7

Anker-Nr.	β _{V,c} %	Gruppe Nr.	Maßgebendes Beta		
1, 2	9.5	1	β _{V,c;1}		
3, 4	32.7	2	β _{V,c;2}		

Widerstand der maßgebenden Lastüberlagerung.

Nachweis erfolgreich

Nicht maßgebende Lastfälle


#	N _{Ed} kN	V _{Sd,x} kN	V _{Sd,y} kN	M _{Sd,x} kNm	M _{Sd,y} kNm	M _{T,Sd} kNm	Belastungsart	β _N %	β _V %	β %
1	-159.0 0	-3.00	-3.00	0.00	0.00	0.00	Statisch oder quasi-statisch	0.00	19.60	0.00

<u>Ankerplattendicke</u>

Die Ankerplattenbemessung berücksichtigt alle Lastfälle. Die Basis für den angezeigten Spannungsnachweis der Ankerplatte ist Lastfall 1. Dieser Lastfall erzeugt die höchste Auslastung

der Ankerplatte beim Spannungsnachweis und ist somit der maßgebende Lastfall.

<u>Spannungsverteilung innerhalb der</u> <u>Ankerplatte</u>

Ankerplattendetails

Ankerplattendicke (FE-	t =	15 mm
Berechnung)		
Material der Ankerplatte		S 355 (St 52)
E-Modul	E =	210.000 N/mm ²
Streckgrenze	$R_{p,0,2} =$	355 N/mm ²
Sicherheitsfaktor	γ _M =	1.0
Querdehnzahl	· v =	0.3
Ausnutzung	η =	41 %
-		
Drofiltyn		⊔ ⊑∧ 16∩

Profiltyp HEA 160

Technische Hinweise

Bei der Bemessung wurde vorausgesetzt, dass die Ankerplatte (falls vorhanden) unter den einwirkenden Schnittkräften eben bleibt. Deshalb muss sie ausreichend steif sein. Die in C-Fix enthaltene Ankerplattenbemessung basiert auf einem Spannungsnachweis, erlaubt aber keine direkte Aussage über die Plattensteifigkeit.

Die Lastweiterleitung im Beton ist für den Grenzzustand der Tragfähigkeit sowie den Grenzzustand der Gebrauchstauglichkeit nachzuweisen. Hierfür sind die erforderlichen Nachweise für das Bauteil incl. den Ankerlasten zu führen. Die weitergehenden Bestimmungen des Bemessungsverfahrens hierfür sind zu beachten. Die Nachweise gelten nur für die Kaltbemessung.

Technische Bemerkungen zum Import von Lastfällen

Die Bemessung wurde auf der Basis von unterschiedlichen Lastfällen durchgeführt. Die Software C-Fix ermittelt den maßgebenden Lastfall für die Verankerung. Dies kann zum maßgebenden Lastfall für die Konstruktion des Knotenpunktes differieren. Die Ergebnisse müssen vom verantwortlichen Ingenieur mit der Bemessung der Gesamtkonstruktion abgeglichen und verifiziert werden.

Allgemeine Hinweise

Sämtliche in den Programmen enthaltenen Informationen und Daten beziehen sich ausschließlich auf die Verwendung von fischer-Produkten und basieren auf den Grundsätzen, Formeln und Sicherheitsbestimmungen gem. den technischen Anweisungen und Bedienungs-, Setz und Montageanleitungen usw. von fischer, die vom Anwender genau eingehalten werden müssen.

Die Anzahl, der Hersteller, die Art und die Geometrie

der Befestigungselemente dürfen nicht geändert werden wenn dies nicht vom verantwortlichen Tragwerksplaner nachgewiesen und gestattet ist.

Sämtliche enthaltenen Werte sind Durchschnittswerte; daher sind vor Anwendung des jeweiligen fischer-Produkts stets einsatzspezifische Tests durchzuführen. Die Ergebnisse der mittels der Software durchgeführten Berechnungen beruhen maßgeblich auf den von Ihnen einzugebenden Daten. Sie tragen daher die alleinige Verantwortung für die Fehlerfreiheit,

WETZEL & VON SEHT

C-FIX 1.115.0.0 Datenbankversion 2023.3.28.8.8 Datum 13.07.2023

Vollständigkeit und Relevanz der von Ihnen einzugebenden Daten. Sie sind weiterhin alleine dafür verantwortlich, die erhaltenen Ergebnisse der Berechnung vor der Verwendung für Ihre spezifische(n) Anlage(n) durch einen Fachmann überprüfen und freigeben zu lassen, insbesondere hinsichtlich der Konformität mit geltenden Normen und Zulassungen. Das Bemessungsprogramm dient lediglich als Hilfsmittel zur Auslegung von Normen und Zulassungen ohne jegliche Gewährleistung auf Fehlerfreiheit, Richtigkeit und Relevanz der Ergebnisse oder Eignung für eine bestimmte Anwendung. Sie haben alle erforderlichen und zumutbaren Maßnahmen zu ergreifen, um Schäden durch das Bemessungsprogramm zu verhindern oder zu begrenzen. Insbesondere müssen Sie für die regelmäßige Sicherung von Programmen und Daten sorgen sowie regelmäßig ggf. von fischer angebotene Updates des Bemessungsprogramms durchführen. Sofern Sie nicht die automatische Update-Funktion der Software nutzen, müssen Sie durch manuelle Updates über die fischer Internetseite sicherstellen, dass Sie jeweils die aktuelle und somit gültige Version des Bemessungsprogramms verwenden. Soweit Sie diese Verpflichtung schuldhaft verletzen, haftet fischer nicht für daraus entstehende Folgen, insbesondere nicht für die Wiederbeschaffung verlorener oder beschädigter Daten oder Programme.

3 Schlussblatt zur Statischen Berechnung

Heft 1 - Stahlbau Fortsetzung 2

Leistungsphase 4 - Genehmigungsplanung

Seiten 1.317 bis 1.397

Anlagen

Bearbeitet von Hauke Seger

Wolfgang Keen Leo Daniel Diedrich

WvS-Projektnr.

Hamburg 26.06.23

WETZEL & VON SEHT

Ingenieurbüro für Bauwesen
Beratende Ingenieure
Prüfingenieure für Bautechnik VPI

Friesenweg 5E 22763 Hamburg
Gutenbergstraße 4 10587 Berlin
info@wvs.eu www.wvs.eu

i.A. H. Seys