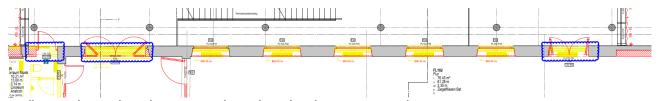
ip viewei version zozz - cupyrigin zozi - iiib AEC Sonware Gilibri

Diezmannstraße 5 D-04207 Leipzig T +49 341 41541-0 F +49 341 41541-11 E office@icl-ing.com

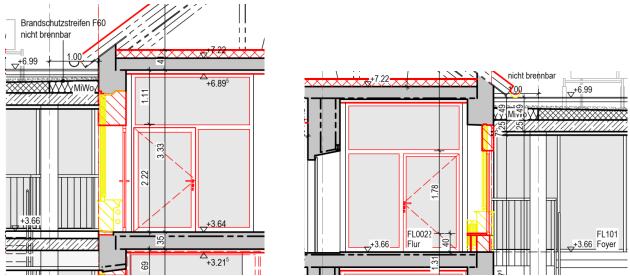
Genehmigungsstatik

Vorhaben: Neubau/ Erweiterung der Oberschule Malschwitz

Ort: Am Park 3


02694 Malschwitz, OT Baruth

Seite von 6


Nr./Pos.: 4A-R-OG-01

Öð?•^ÁHÁ\$ →} ˇ} *^} Áð; åÁ; æ&@[|*^} åÁs|æ Áð; *^, [|\dK

Q ÂÛ&@ ãơÁs `¦&@Áq ^Á/>¦4--}`} * Ápê•• ơÁq &&@Ás^¦Át¦`} å|^*^} å^Á/>¦-/ Fensteraufbau erkennen:

Öæ ´Á¸ ãåÁ^ã¸Á ´• êc |ã&@¦ÁÛċ¦:Áã¸ÁØ[¦{Á^ã¸^•ÁØ|æ&@;ċ¦:^•Áã¸Áåã^Á\$ ~} `} *Á°ã¸*^à¦æ&@£Ã¸^|&@¦Á¸`¦Áåã^Á : `• êc |ã&@Áà^¦{æ^¦`}*Áæàdê*dĚÁ

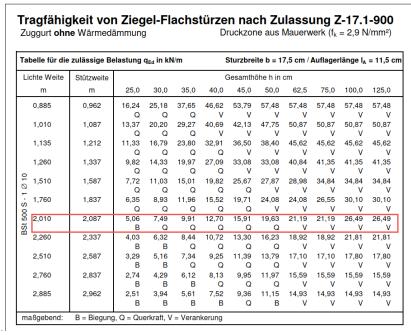
Öðà•Á¸ ðiåÁ带&@Áæ&@^¦^&@^•Áæà~*^}Áå^¦Á à^¦{ æĕ^¦¸}*ÁÓ^•ææ)å••č¦;Á¹¸ê@|^ã ơ đĂÖæÁåæ Á
Õ^¸ ð&@Áå^¦Á à^¦{ æĕ^¦¸}*Áæ†Á^@Á*^!ðj*Á³ðj*^•&@Éc óÁ¸ ðiåÉÁæ)}ÁåðìÁ⁄æØÁå^•ÁØþæ&@ č¦;^•Á
\[}•d`\æãÁ¹-{|*^}ÈØ>¦Áå^}ÁØþæ&@ č¦;Áã óÁåðàÁT ðjå^•œĕ -|æ*^¦|ê}*^Áç[}ÁFFÉÉ&{ÁŊÁå^}Á
Fenster-ÐV>¦;æ*^}Áئ;`•ơ\|^}Áç[¦Áå^{ÁÖðj|^*^}Áå^•ÂÛč¦;^•ÈÁ

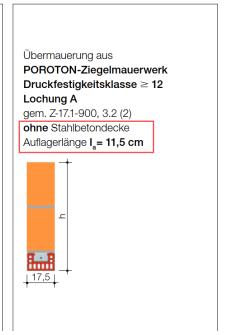
Ó^{ ^••`}*•œà^||^Árãj^•ÁØ|æ&@c`l:^•Á>¦Áræ)啜ê¦\^ÁåMÁFÏÉ&{K

Ingenieur Consult Gml

Diezmannstraße 5 D-04207 Leipzig T +49 341 41541-0 F +49 341 41541-11 E office@icl-ing.com

Genehmigungsstatik


Vorhaben: Neubau/ Erweiterung der Oberschule Malschwitz


Ort: Am Park 3

02694 Malschwitz, OT Baruth

Seite von 6

Nr./Pos.: 4A-R-OG-01

Nach der allgemeinen Bauaufsichtlichen Zulassung dieser Sturze mit der Zulassungsnummer Z-17.1-900 sind die Ziegelsturze mind. der Feuerwiderstandsklasse F90-A nach DIN 4102-2 zuzuordnen. Auszug aus der Baua. Zulassung:

Seite 13 der allgemeinen bauaufsichtlichen Zulassung Nr. Z-17.1-900 vom 18. Februar 2008

Tabelle 4: Feuerwiderstandsklassen nach DIN 4102-2

Zei- le	Konstruktions- merkmale für die		Mindest-			/lindestbre lerstandsk		
	Zuggurte der Flachstürze				F 30-A	F 60-A	F 90-A	F 120-A
1	Computer Service Servi	Zuggurt höhe h [mm]	Beton- deckung c _{min} [mm]	Schalen- dicke s _{min} [mm]				
1.1	Zuggurte mit	71	15	15	(115)	(115)	(115)	-
	schalenförmigen Ziegel- Formsteinen	113	20	15	115	115	175 (115)	-

Die () - Werte gelten für Stürze mit 3-seitigem Putz nach DIN 4102-4, Abschnitt 4.5.2.10. Auf den Putz an der Sturzunterseite kann bei Anordnung von vermörtelten Stahlzargen oder Holzzargen verzichtet werden.

OE -Áa^ | Án 3&@ | ^ } ÁÛ ^ ã ^ Án æ} } Á> | Áa ð ÁÖ æ ^ | Áa ^ ÁÒð; à l ð; * ^ } • Áa ^ | Ás ~ } * } * * ^ } Áa / Áû ^ ã ^ } ÁÛ ^ ã ^ } . Éa ð ÁÖ æ ^ | Áa ð ÁÖ ð ÁÖ } • & @ ãa ˇ } * Á Û Č | : ^ Éa ^ | Áa ^ | Áa ^ | Áa ð † Áa @ Áa ð † Áa | ð * Óa ð ÁÖ † Óa ÁÖ † • & @ ãa ˇ } * Á åæ > à ^ | Áa | ð * Óa ð ÁÖ † ÁÖ Þ ÉÁ

OF•&@Ani^}åÁn¦-[|*oÁnā,^Áà^|{ aĕ^|`}*Áå^|Á,^*^}ÁÛc|:^Áàã Á.`|ÁNSÁå^|Áà^•c^@}å^}ÁÛc|:^ÉÁ

3,01

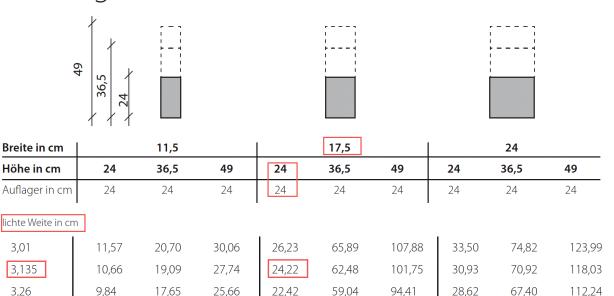
3,135

3,26

Vorhaben: Neubau/ Erweiterung der Oberschule Malschwitz

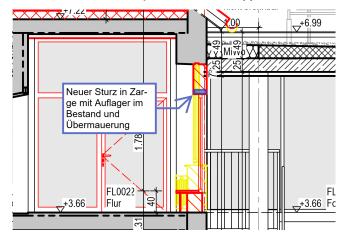
Ort: Am Park 3

02694 Malschwitz, OT Baruth


Seite von 6

Nr./Pos.: 4A-R-OG-01

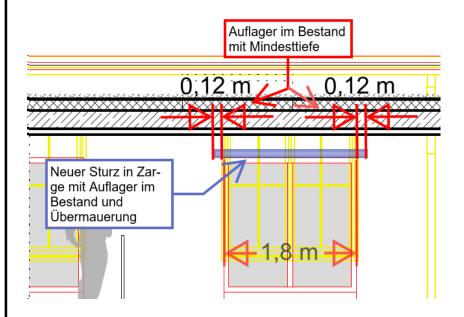
Òã,^ÁOE•→@`}*Ásd+ÁÚcæ@+č¦:Án,å^¦ÁÚcæ@à^q[}•č¦:ÁãnoÁ,4*|&3&@Á}åÁs^ãÁs^¦Á/>¦4--}`}*Á/PF€G-T01 ^¦-f¦å^¦|&&@£åæååð\ÁØ|æ&@o>¦:^Áà^ãÁð;^¦ÁŠê}*^Áç[}ÁNŒÉ€ Áæ)Áã@^Áàæĕ&@@[|[*ã&@}ÁÖ¦^}:^}Áq[i^}ÈÁ $\ddot{O} = \dot{A} + \dot{A} +$ Bestand.


| Þæ&@ÁÜ>&\•]¦æ&@Á; ãdÁs^¦ÁUÚŠÁ;[||Ás^¦ÁÔã;àæÁ; ãco^|•ÁÚææ@à^d;}-~¦cã;c^ã+c°;:Á^¦-;|*^}È Öa∿∙^¦Á, ãlåÁ,[}•d`∖oãpÁt^, ê@oÁ}åÁ⊳¦Ásað ÁÓ^{ ^••`}*Á, ãlåÁn}ÁØ^¦oãto^āp•oč¦:Áso^¦ÁØã{ æÁÖ^}}^¦oÁs[{ Á Typ RS-Ùc' |: Áse < ^> @ dÉX^ | * | ^ & @ ase ^ ÁÓae c' & Asa) & | ^ | AF ^ | • c' | | ^ | Á a & Asa) _ ^ } & a ase È

Belastungstabelle RS-Stürze für Innenwände

Beim Einbau des Stahlbeton- Fertigteilsturzes ist auf die beidseitige Auflagerbreite von 24cm zu achten. Ôã\ÁÔ^q[}å^&\`}*Ána o^{[Á`Á, ê@^}}ĒBåæ••Ásã\ÁÔ¦æ)åæ)-{¦å^¦`}*ÁQZHEDA\ā;*^@e¢^}Á,āååĒApæ&@bå^¦ÁÔQQÁ. 4102-2 entspricht das einem Achsenabstand von 25 mm.

Òã,^ÁCE•→@`}*Áæ`•ÁØ|æ&@o~¦:^}ÁaróÁ,`¦Áà^ãå^}Á\$~}`}*^}Á£ÁOÉ{Áàæ`c^&@;[|[*ã&@Á;4*|&&@È Ù\ã:^Á`¦ÁŒ•>@`}*Á>¦Á\$ā\ÁZā*^|;|æ&@c`;:^K


Diezmannstraße 5 D-04207 Leipzig T +49 341 41541-0 F +49 341 41541-11 E office@icl-ing.com Vorhaben: Neubau/ Erweiterung der Oberschule Malschwitz

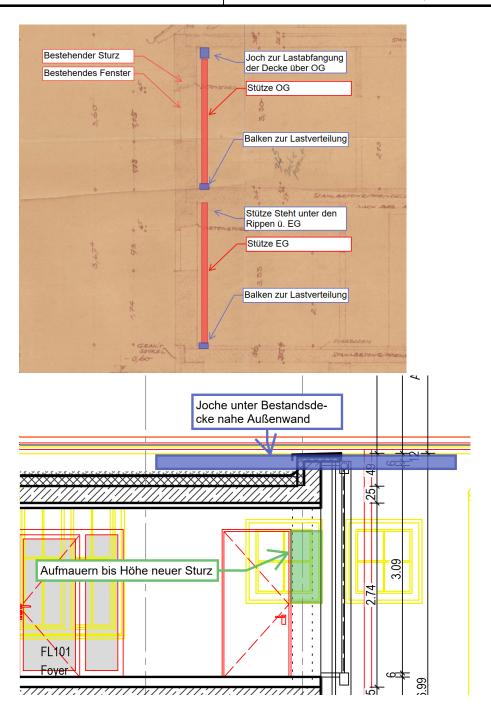
Ort: Am Park 3

02694 Malschwitz, OT Baruth

Seite von 6

Nr./Pos.: 4A-R-OG-01

Ó^ata^} Á/> | 4--} ` } * ÁFFÎ -TO2 kommt es zu einer Verschiebung des Sturzes um ca. 42 cm. Damit wird in åæ ÁŒ |æ* ^| Áa^• Áş[| @æ} å^} ^} ÁÜċ |: ^• ÁŒ |æ* ^| à| ^a* Á&æÆGÉ &{ Á*^{ êi ÁÓ^• œ} å• ` } &\ |æ* ^} Æ Hier wird das folgende Sanierungsvorgehen vorgeschlagen:


Diezmannstraße 5 D-04207 Leipzig T +49 341 41541-0 F +49 341 41541-11 E office@icl-ing.com Vorhaben: Neubau/ Erweiterung der Oberschule Malschwitz

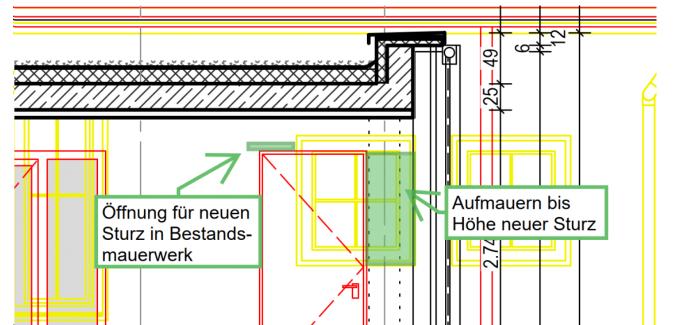
Ort: Am Park 3

02694 Malschwitz, OT Baruth

Seite von 6

Nr./Pos.: 4A-R-OG-01

$$\begin{split} & (\triangle \hat{A} - \hat{A} -$$


Diezmannstraße 5 D-04207 Leipzig T +49 341 41541-0 F +49 341 41541-11 E office@icl-ing.com Vorhaben: Neubau/ Erweiterung der Oberschule Malschwitz

Ort: Am Park 3

02694 Malschwitz, OT Baruth

Seite von 6

Nr./Pos.: 4A-R-OG-01

Oੁ\$ • & @pài ^} åŸ ãå Åå^¦Á¸^`^ÂÛċ ¦: Án㸠*^|^* dĚŒ€ ~ ¦``} åÅå^¦Á*^¦ã; *^} Á√|+a&@ ċ ¦: Án} × * • à¦^ãc^Áş[} ÁL FÊŒ€ Ÿ ãåÁ ^ã, ÁZā*^|+a&@ ċ ¦: Án} >*^} Êĸ ^|&@¦ÁS[} • d`\ cãpÁnã; *^|^* cÁ¸ ãå ÈÁ

$$\begin{split} & + \dot{\vec{L}} \hat{\vec{A}} \hat{\vec{A}$$

ÖðtÁ à^¦{ æĕ^¦ˇ}*Áðṭ Áðx^• & @}å^} ÁØ^}• & ¦Á ðiåÁş[}Áðx^• & @}å^} ÁÛcˇ¦: Áæà*^~ * dɸ[厦&@ÁØðt¦Á kaum Mehrlasten in den Flachsturz eingehen.

Þæ&@{|*^}åÁ¸ãåÁåãÀÁ/>¦4~}`}*ÁįãóÆæ*^ÁÛæ)ã°¦`}*•♂&@jã&©Ó@¦*^•♂∥È

| EÁÖ&PÁV^{][|ê|^ÁÛc>c \[] • d`\call }ÁA ÁÓ^• cæ) å• * ^ àê` å^Á ālåÁ*} c^\|} dÉ

mb-Viewer Version 2022 - Copyright 2021 - mb AEC Software GmbH

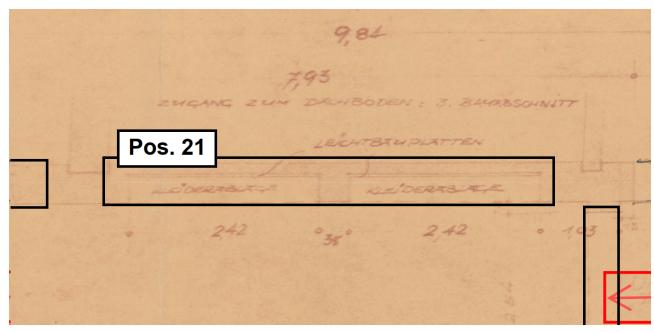
Diezmannstraße 5 D-04207 Leipzig T +49 341 41541-0 F +49 341 41541-11 E office@icl-ing.con Vorhaben: Neubau/ Erweiterung der Oberschule Malschwitz

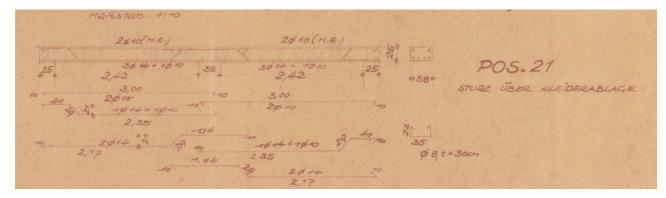
Ort: Am Park 3

02694 Malschwitz, OT Baruth

Seite von 7

Nr./Pos.: 4A-R-OG-02


Pos. 4A-R-OG-02 Neuer Sturz in tragender Wand mit Hauptlast aus Decke ~ VYf C;


Qháan Ádæt^} a^} á^} Ár ê} a^Áq Ád Õ-Pæt ÁcÁ, ^¦a^} Á,^* ^ÁUc>¦: ^Ánā, *^àæ dĚAnæ&@q |*^} aÅ, ^¦a^} Ádan Á
^} o] |^&@} a^} ÁS -}*}* ^} *A Ádalæ Ánā, *^, [|\ oÁ, æ\ ðh|dK

Ò• Á ã å Åå ð Á\$ --} ` } * ^ } ÆFÎ -F03 und FL102-F06 neu zu schaffen.

ÖðrÁS ~} `} *ÁŞ ÁŠ^¦ÁDB&@ ^ÁDEHÁ¸ ðlåÁQÐr¦à^ðÁ\} &\ÁN¸ &\ÁN¸ &\ÓN¸ AÑ CæQÀ^({} • c' |: ÁN¸ð; *^à læ&@DÃ , ^|&@¦Áş[|{ æṭ•Á>¦ÁŠðrÁ à^|•]æ}}`} *ÁŠ\$^¦ÁŠ|^ãã^¦æà|æ*^}ÁSāP\$ &\ÉÖ^}ÁÓ^•ææ)å•]|ê}^} Á; æ&@Á¸ `¦å^Á der Sturz wie folgt bewehrt:

iewer Version 2022 - Copyright 2021 - mb AEC Software (

BauStatik S340.de

Genehmigungsstatik

Diezmannstraße 5 D-04207 Leipzig T +49 341 41541-0 F +49 341 41541-11 E office@icl-ing.con Vorhaben: Neubau/ Erweiterung der Oberschule Malschwitz

Ort: Am Park 3

02694 Malschwitz, OT Baruth

Seite von 7

Nr./Pos.: 4A-R-OG-02

HÉ (Quố (1/4) ^ ^ ÁU c : Á (1/4) ~) * Á (1/

Belastung

Öð ÁÓ^|æ č}*Áæ Áå^}ÁÚč¦:Á¸ãåÁsà^¦Áå^}ÁŠæ c^ā;: *Áå^¦ÁY æ)åÁÁ;åÁÖ^&\^Áåæ;>à^¦Áæ)*^•^c dÈ •dê}åð ^ÁÓ^|æ č}*^}KÁ Òð ^}*^, &&@Á¸ãåÁÚ¦[*¦æ{{ã,c^¦}Áà^¦>&\•&&@ð dÈ

- Holzdach

gk = 10,00 kN/m

- Rippendecke mit 3,2 x 2,5m (Lasteinzug)

gk = 8,00 kN/m

-Ö^&\^}æ`~àæ`Á⊳ÁUÕÁ.ˇ¦ÁÖê{{``}*Ánc&ÉAFÉE€Á¢ÁGÉE{

gk = 3,75 kN/m

Vorhaben: Neubau/ Erweiterung der Oberschule Malschwitz Ort:

Am Park 3

02694 Malschwitz, OT Baruth

Seite von 7

Nr./Pos.: 4A-R-OG-02

- Ó^*^@àæ\^ãxÁ`ÁÜ^çã ã}}•: ^&\^ÁFÊ€ÁÞÐ Á¢ÁÐĨ{

gk = 2,50 kN/m

Schneelast aus Dach: Schneezone 2:

sk = 7,15 kN/m

Als Reserve wird die Last nur auf einen Struzbalken angesetzt. Diese Situation ist durch die abfangen, weshalb die nachfolgende Bemessung stark auf der sicheren Seite liegt.

System

Òã, -^|ådê*^¦Á; ãoÁn ĒĒ €Áa&@^}ÁÛ]æ}}, ^ão^Á

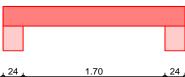
 $| bask@AU > 8 \cdot 0 | | aask@AI aaAa^| AU USAa aan^| AUC | Aasta Auc | Aaasta Auc | Aasta Auc | Aasta Auc | Aasta Auc | Aasta Auc | Aasta$ \mathcal{O}^{\wedge} cđ \mathcal{O}° c : Á đả Ás \mathcal{O}° để \mathcal{O}° c \mathcal{O} Tã, å^• ca), -{¦å^¦`} * Áa), Áá^} Áá^} ÁØ^¦cã c^ã• c'¦: ÉÁ, ^|&@¦Áá`¦&@Áá^} ÁOÆÞÁ*^, ê @cÁ, ãåÈ

Material

C25/30

B500A

F30


 $\overline{\mathsf{A}}$

В

<u>System</u>

M 1:45

Òā ~|ådê*^¦ÁQFÏ É EQI ÈEEFJI ÈED System

Abmessungen Mat./Querschnitt Fel d [m] 1.94 Materi al

C 25/30

Ansicht

b/h [cm]

Auflager

Lager [m][cm] 0.00 24.0 1.94 24.0

Mauerw. Mauerw.

Art

 $K_{T,z}$ [kN/m] fest fest

mb BauStatik S340.de

Diezmanns D-04207 Le T +49341. F +49341.

Genehmigungsstatik

Vorhaben: Neubau/ Erweiterung der Oberschule Malschwitz

Ort: Am Park 3

02694 Malschwitz, OT Baruth

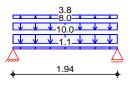
Seite von 7

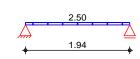
Nr./Pos.: 4A-R-OG-02

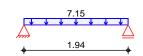
Belastungen

Belastungen auf das System

Grafik


Belastungsgrafiken (einwirkungsbezogen)


Einwirkungen


Gk

Qk.N

Qk.S

Streckenlasten in z-Richtung Einw. *Gk*

Einw. Qk.N Einw. Qk.S

Gleichlasten

Fel d	Komm.	а	S	qı i	q re
		[m]	[m]	[kN/m]	[kN/m]
1	Eigengew	0.00	1.94		1.05
1		0.00	1.94		10.00
1		0.00	1.94		8.00
1		0.00	1.94		3.75
1		0.00	1.94		2.50
1		0.00	1.94		7.15

Kombinationen

•œ} åð Ð[¦>à^¦*È

^{ êi ÁÖ Φ ÁÒ ÞÁFJJ ŒFËFÁ } å ÁÖ Φ ÁÒ ÞÁFJJ€ Ek (*EW)

1.00*Gk

2 1.35*Gk

+1.05*Qk.N

+1.50*Qk.S

Bemessung (GZT)

Biegung Abs. 6.1

ADS. 6.1

Feld 1

Ó^{ ^••`}*Á⇒!ÁÓâ*^à^æ}•]¦`&@}*							
X	Ek	M _{yd} , o	x/d _o	z_{o}	$A_{s,o}$	$A_{s, o, erf}$	
F 7		Myd, u	x/d_u	Z_{u}	A _{s, u}	As, u, erf	
[m]		[kNm]		[cm]	[cm ²]	[cm ²]	
(L = 1.94 r)	n)						
0.00	1	-	-	-	-	0.57_{e}	
	1	-	0.004	20.6	-	1.41 _q	
0.12a	1	2.49	-	-	-	0.57 _e	
	2	4.82	0.072	20.0	0.53	1.41 _q	
0.97*	1	10.73	_	-	_	-	
	2	20.76	0.275	18.2	2.58	2.58	
1.82 _a	1	2.49	-	-	-	0.57 _e	
	2	4.82	0.072	20.0	0.53	1.41 _q	
1.94	1	-	-	-	-	0.57 _e	
	1	-	0.004	20.6	-	1.41 _q	
o: Auflagarra	nd						

- a: Auflagerrand
- *: maximales Feldmoment
- e: Endauflagereinspannung nach 9.2.1.2(1)
- q: aus VEd im Endauflager nach Abs. 9.2.1.4(2)

Querkraft

Abs. 6.2

Feld 1

Ó^{ ^••`}*Á⇒¦ÁÛ`^¦\¦ææà^æ}•]¦`&@

	X	Ek	V_{Ed}		$V_{Rd,max}$	VRd, c	asw, erf
	[m]		[kN]	Oš Q	[kN]	[kN]	$[cm^2/m]$
(L	= 1.94 m)					
	0.00	2	28.46 _R	18.4	83.67	-	-
	0.12_{a}	2	28.46 _R	18.4	83.67	-	1.46 _M
	0.33_{v}	2	28.46	18.4	83.67	22.57	1.46 _M
	0.97	1	- R	18.4	83.67	22.57	1.46 _M
	1.61 _v	2	28.42 _R	18.4	83.67	22.57	1.46 _M
	1.82 _a	2	28.42_{R}	18.4	83.67	-	1.46 _M
	1.94	2	28.42_{R}	18.4	83.67	-	-
a:	Auflagerrand	d					

Diezmannstraße
D-04207 Leipzig
T +49 34 14541
F +49 34 1541
E office@icl-ing

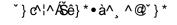
Vorhaben: Neubau/ Erweiterung der Oberschule Malschwitz

Ort: Am Park 3

02694 Malschwitz, OT Baruth

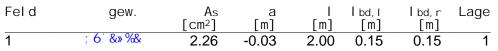
Seite von 7

Nr./Pos.: 4A-R-OG-02


v: Abstand d vom Auflagerrand

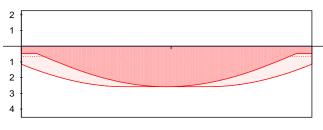
R: Querkraft reduziert

As


M: Mindestbewehrung nach Abs. 9.2.2

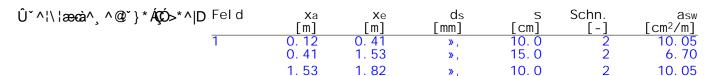
Bewehrungswahl

Fel d	gew.	As [cm ²]	a [m]	 [m]	lbd,l [m]		Lage
1	; 6 (» %	4.52	-0.01	1.96	0.13	0.13	1


ÇŠê}*^}Á§\|ÈÁX^¦æ}\^¦`}*•|ê}*^}ÉÃ;@}^ÁÛc4i^D

ÇŠê}*^}Á§\|EÁK^¦æ}\^¦`}*•|ê}*^}ÉÃ;@}^ÁÛc4i^D

Lêngsbewehrung M 1:25



erf. Längsbewehrung / Zugkraftdeckungslinie

verl. Feldbewehrung gemäß DIN EN 1992-1-1, 9.2.1.4(1)

vorhandene Längsbewehrung

Nachweise (Brand)

Brandschutznachweis nach DIN EN 1992-1-2

Brand

Fouorwiderstand

TO.00 QR.IN

Feuerwiderstandsklasse 3-seitige Beflammung

Querschnitt

Mindestabmessungen nach Tab. 5.5

Querschnittsbreite

b = 175 mm - 80

R30

mm

OR&@iæà•œê}å^

Feld 1

mittlerer Achsabstand Balken

	[m]	LIX	[-]	OB#aa 'Q	0šQ	[mm]	[mm]	[mm]	[mm]
Feld 1	0.12	1	0.5	27.00	930	0	0	0	0
	0.97	1	0.5	132 22	634	15	-13	2	34

OB&@ æà•æà•æà åÁÒã: ^|•œêà^

Х	EK	fi	fi	cr	ar30	a	derf	ar
[m]		[-]	OB#aa Q	Oš Q	[mm]	[mm]	[mm]	[mm]
0.97	1	0.53	132.2	634	15	-13	2	34

mb BauStatik S340.de

Neubau/ Erweiterung der Oberschule Malschwitz Vorhaben:

Genehmigungsstatik

Ort: Am Park 3

02694 Malschwitz, OT Baruth

Seite von 7

Nr./Pos.: 4A-R-OG-02

OB&@ ææ}•	ന് ദ	åÁÒ&\	•œ̂à^
	w	a, ca	ωu

X	a _{sd, erf}	а
[m]	a _{sd, erf} [mm]	[mm]
0.12	-	-
0.97	2	34

Nachweise (GZG)

im Grenzzustand der Gebrauchstauglichkeit nach DIN EN 1992-1-1:2011-01

Verformungen

Abs. 7.4

Begrenzungen der Verformungen im gerissenen Zustand (Zustand II)

Ö^¦Ápæ&@ ^ã Á ãåÁ>¦Áåã/Á ~æãēœ}åã ^} ÁBemessungssituationen unter Langzeitbelastung å ¦&@ ^→@dÈ

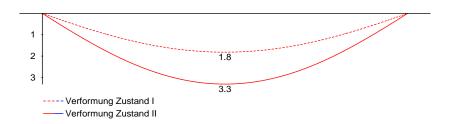
š

zul. Endverformung

zul. Differenzverformung

f¬	=	1/500
f	=	1/500

Feld 1


^	LIN	IVIEG	11, 1		111, '	ı ', Zui
			f _{1,0}	f _{II,0}	fii	f_{zul}
[m]		[kNm]	[mm]	[mm]	[mm]	[mm]
(L = 1.94)	n)					
0.97	1	11.08	1.82		3.31	3.88
			0.58	1.54	1.77	3.88

 $f_{1,0}/f_{11,0} =$ $f_{I,\neg}/f_{II,\neg} =$ $f_{II} =$

Verformungen ungerissen/gerissen zum Zeitpunkt t = 0 Verformungen ungerissen/gerissen zum Zeitpunkt t = ¬ Differenzverformungen f_{II,7} - f_{II,0}

Grenzlinien der Verformungen f [mm]

M 1:20

5 i ZU[Yf_f} ZhY

Char. Auflagerkr.

charakteristische Auflagerkrêfte (je Einwirkung)

J	Aufl.	Fz, k, mi n	Fz, k, max
		[kN]	[kN]
Einw. <i>Gk</i>	A	22.12	22.12
	В	22.12	22.12
Einw. Qk.N	A	2.43	2.43
	В	2.43	2.43
Einw. Qk.S	A	6.94	6.94
	В	6.94	6.94

Neubau/ Erweiterung der Oberschule Malschwitz Vorhaben: Ort:

Am Park 3

02694 Malschwitz, OT Baruth

Seite von 7

[-]

Nr./Pos.: 4A-R-OG-02

Zusammenfassung Zusammenfassung der Nachweise

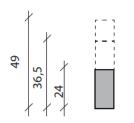
Nachweise (GZT) Nachweise im Grenzzustand der Tragfêhigkeit

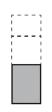
> Nachwei s 0rt

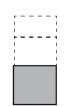
OK Biegung OK Querkraft OK Bewehrungswahl

Nachweise (Brand) Brandfall im Grenzzustand der Tragfêhigkeit

Nachwei s


[-] **Brand** OK


Nachweise (GZG) Nachweise im Grenzzust. der Gebrauchstauglichkeit


> Nachwei s 0rt x [m] Verformungsnachweis 0.85 Feld 1 0.97 OK

Òã,^ÁŒ•→@`} * Áæ ÁØ\cã c^ã c'ì: Æ oÁ 4* | & @ÁŒ ÁÚ|[å`\cà^ã] ð | Á ã á Á ã ÁÚ AÜÙ-Sturz der Firma Ö^\} ^\d∕æĕ ~* ^->@dK

Belastungstabelle RS-Stürze für Innenwände

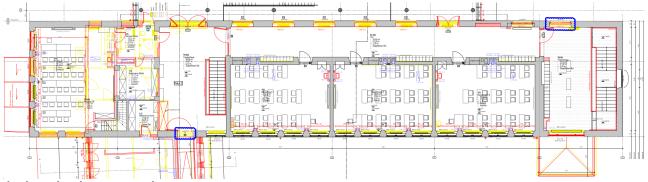
Breite in cm		11,5			17,5			24	
Höhe in cm	24	36,5	49	24	36,5	49	24	36,5	49
Auflager in cm	24	24	24	24	24	24	24	24	24
lichte Weite in cm	42.08	71.80	101.01	I 03.30	162.20	232.63	l 124.52	216.18	309.89

1,01	42,08	71,80	101,01	93,30	162,20	232,63	124,52	216,18	309,89
1,135	34,61	59,09	83,15	76,86	133,67	191,75	102,57	178,15	255,42
1,26	28,94	49,43	69,56	64,36	111,98	160,66	85,88	149,22	213,99
1,385	24,52	41,91	58,99	54,63	95,09	136,47	72,89	126,71	181,74
1,51	21,01	35,94	50,60	46,91	81,70	117,27	62,58	108,85	156,16
1,635	36,62	65,03	94,13	65,93	127,32	185,98	75,03	166,73	235,42
1,76	32,07	56,98	82,50	59,77	111,64	163,11	67,98	149,44	210,50
	I						ı		

Baugleiche FT- Sturze anderer Hersteller sind anwendbar unter Einhaltung der Bemessungsergebnisse.

Diezmannstraße 5 D-04207 Leipzig T +49 341 41541-0 F +49 341 41541-11 E office@icl-ing.com Vorhaben: Neubau/ Erweiterung der Oberschule Malschwitz

Ort: Am Park 3


02694 Malschwitz, OT Baruth

Seite von 2

Nr./Pos.: 4A-R-OG-03

Pos. 4A-R-OG-03 Neuer Durchbruch in tragender Wand ohne Hauptlast aus 8 YW Y C;

QÁBÀÀÁdæt^}å^}Ár ê}å^Ág ÁUÕ-Pæ•ÁGÁ, ^¦å^}Á,^~^ÁUO-!: ^Ásà^¦Á\$ --}~}*^}Árð;*^àæ*ŒÆææ@[|*^}åÁ , ^¦å^}ÁBÀÀA;•]¦^&@}å^}Á\$ --}~}**^}ÁB|æÁAð;*^. [|\dÁ;æ\æ\æ\æ\æ\æ

Ò Á ǯ åÁåð Á\$ →} ` } * ^ } Á/PF€F-F01 und FL103-T01 neu zu schaffen.

ÖæÁsað•^Áv ê} å^Ás ¦&@ÁsaðAÖ^&\^Ásà^¦ÁUÕÁ, æð *^à|æ&@Á\ æð *^à|æ&@Á\|æ c^cÁ, ^¦å^}ÊA\ *••Á@A\Ása^¦Ása^¦Ás^} Á\
•&@æ^}å^}Á\$ ~} *^} A^A^ā, ^ÁOā-æð, *`} *Ás^¦ÁV æð, åÁ\¦-[|*^}EÓ•Á, ālåÁsæ Á[|*^} å^ÁX[|*^@}Á
vorgeschlagen:

 $\ddot{O}^{\dot{A}}\dot{O}^{\dot{A}}^{\dot{A}}\dot{O}^{\dot{A}\dot{O}^{\dot{A}}\dot{O}^{\dot{A}}\dot{O}^{\dot{A}}\dot{O}^{\dot{A}}\dot{O}^{\dot{A}}\dot{O}^{\dot{A}}\dot{O}^{\dot{A}}\dot{O}^{\dot{A}\dot{A}}\dot{O}^{\dot{A}$

CĐÁQ đầ∧¦Á,^~^ÂÙ č¦: Áầ∧¦Á\$ →}~}*Á@¦*^• ơ∥đÁ, đã Áầ ð Áã ^} đã Ô Â\$ →}~}*Á¾ Áå^¦Ár æ) åÁ@¦*^• ơ∥đÁ.

Bautechnologie obliegt dabei dem AN.

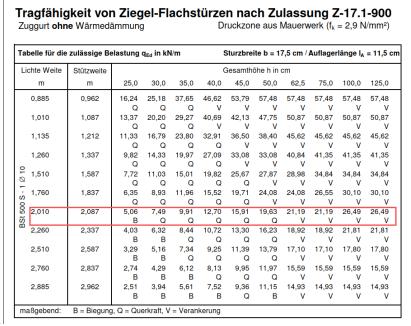
Somit unterschieden sich diese Sturzschaffung zur Position 4A-OG-R-02 nur durch den Entfall der Oā-æ) * * } * • àæ ^ } Á> | Áà ð Á⁄ æ) åÁJ ÕÈ

Öða ÁÓ^|æ=c*} * Ásē -Ásā Áv ê} å^Án¦* āsoÁn 3&@Án°åā |&&@Ás = ÁP[|: åæ&@Ás^¦Á à^¦{ æ*^¦*} * Á;} åÁ;*{ Á *^¦āj*^}ÁV^āÁsē•Ás^}ÁÖ^&\^}Ásà^¦ÁUÕÈ

Ø⊳¦Áå^}ÁØ|æ&@cč¦:Áã oÁåã^ÁTãjå^•œë ∤æ*^¦|ê}*^Áş[}ÁFFÉ&{Á§,Áå^}ÁØ^}•o^¦-ÐV>¦:æ*^}Á@¦: *•o^||^}Áş[¦Á dem Einlegen des Sturzes.

mb-Viewer Version 2022 - Copyright 2021 - mb AEC Software GmbH

Diezmannstraße 5 D-04207 Leipzig T +49 341 41541-0 F +49 341 41541-11 E office@icl-ing.com Vorhaben: Neubau/ Erweiterung der Oberschule Malschwitz


Ort: Am Park 3

02694 Malschwitz, OT Baruth

Seite von 2

Nr./Pos.: 4A-R-OG-03

Ó^{ ^••`}*•œà^||^Á^ã,^•ÁØ|æ&@c`|: ^•Á>|Á′æ}啜ê|\^ÁåMÁFÏÉE&{K

Nach der allgemeinen Bauaufsichtlichen Zulassung dieser Sturze mit der Zulassungsnummer Z-17.1-900 sind die Ziegelsturze mind. der Feuerwiderstandsklasse F90-A nach DIN 4102-2 zuzuordnen. Auszug aus der Baua. Zulassung:

Seite 13 der allgemeinen bauaufsichtlichen Zulassung Nr. Z-17.1-900 vom 18. Februar 2008

Tabelle 4: Feuerwiderstandsklassen nach DIN 4102-2

Zei- le	Konstruktions- merkmale für die	Mindest-			Mindestbreite b in mm Feuerwiderstandsklasse-Benennung ()				
	Zuggurte der Flachstürze				F 30-A	F 60-A	F 90-A	F 120-A	
1	Cmn E	Zuggurt höhe h [mm]	Beton- deckung c _{min} [mm]	Schalen- dicke s _{min} [mm]					
1.1	Zuggurte mit	71	15	15	(115)	(115)	(115)	-	
	schalenförmigen Ziegel- Formsteinen	113	20	15	115	115	175 (115)	-	

Die () - Werte gelten für Stürze mit 3-seitigem Putz nach DIN 4102-4, Abschnitt 4.5.2.10. Auf den Putz an der Sturzunterseite kann bei Anordnung von vermörtelten Stahlzargen oder Holzzargen verzichtet werden.

mb-Viewer Version 2022 - Copyright 2021 - mb AEC Software GmbH

Vorhaben: Neubau/ Erweiterung der Oberschule Malschwitz Ort:

Am Park 3

02694 Malschwitz, OT Baruth

Seite von 6

Nr./Pos.: 3A-R-OG-02

Neuer Sturz in tragender Wand mit Hauptlast aus Decke Pos. 3A-R-OG-02 VYf C;

QÁåðàÁdæt^}å^Árê}å^Árê}å^Ág ÁUÕ-Pæĕ•ÁFÁ, ^¦å^}Áj^`^ÁÛ⇔¦: ^Ánðj,*^àæŏdÁnæ&@[|*^}åÁ, ^¦å^}ÁåðàÁ

Ò•ÁārơÁsàAÁ\$→}`}*ÁØŠF€I-V€FÁQIÁSA^IÁOB&@^ÁOEFHÁ,^`Á`Ár&@œ-^}ĒÄÖƏNÁTæ¢ā;æфÁ\$→}`}*•à¦^ã&Á, ãåÁ mit 1,90m lichter Breite ermittelt.

ÖæÁsað•^Áv ê}å^Ás*¦&@ÁsaðÁÖ^&\^Ásà^¦ÁuŌÁ;æi*^à|a&@Ás^|æec^ó, ^¦å^}ÊÄ; *••Á@ð\¦Ásà^¦Ás^¦Á • &@e--^} å^} Á\$ --}``} * Árā,^ÁQā--æ; *``} * Ás^¦ÁY æ; åÁr¦-[|*^} ÈÒ• Á; ãå Ásæ Á[|*^} å^Áx[|*^@} Á vorgeschlagen:

FÉÀÒ•Á, ^¦å^}Á, ^ãÁ, |^ã, ^Á, &@^&\ã ^ÁS4&@¦Á§ ÁBã ÁY æ) åÁ* ^•&@æt ^}ÉÁB° ¦&@ÁBã ÁN, ^ã•ÁNã Ábæt ê@t ^¦Á Óæl\^} Á^• c^&\ cÁ\} åÁ ãÁÜc>c ^} Á ÁÕ^àê å^ã; }^!^} Á\} åÁê i ^!^} Á\^• &&@!cÁ ãåÈ `à^¦Ásað ÁÓæl\^}Ás Ás^¦Áv æ)åÁ;}åÁsã ÁÙœœ⊕ c>c^}Ájaði^}Ásið ÁS¦ê-e^Ásæ)}Á;ê@^}åÁs^¦Á Óæ {æ;}æ@;^}Á;æ&@Áæ;i^}Áa;_ÈÁa;Áåæð;ÁÖ^&\^Á÷à^¦ÁÔÕÈÁN;c°¦Áa;ð*ÁÚc>c^}Áa;ÁÒÕÁa;cÁ;ã;^Á à^¦Ása^ÁÜā[]^}Á, ^¦å^}Ása^ÁŠæec^}Ásaæ)}Á, aðå^¦ÁsaðÁCEi^}, æ)åÁs[ÁÖÕÁnā]*^|^ã&odÁ

ã Ásã Ás → `} * Ásã * ^à œ óÁ} åÁ¦ææ & @>• ã Áœ • * ^\ ^ādŽÖæ)æ& @Á¦-{|* óÁsæ Á¦^ã ぐ{ { ^} å^Ás^¦Á anderen Wandseite. Es folgt wiederum der Einbau des Stahlsturzes und das Auskeilen. Der Sturz à: Éàân ÁÚc: ^Á ^¦å^} Áæ Ánã Ánã &@• ÁT 4¦¢|à^œ4 ^|^* ŒÁÖ^¦ÁT 4¦¢|Á, ઁ•• Á, 4*|æ@ Áå¦ š& ^•• Á, 4*|æ@ Áå¦ š& ^•• Á, 4*|æ@ Áå¦ š& ~ • &@ ā å +^āÁ ^ā ÈÒ• Á āåÁN} & |• d] + 4 | & |Á {] + @^} È Ö^¦ÁÓ^¦^&&@Á、ã&@}Áå^}Áå^ãå^}Áùoãå^}ÁÙoč¦:àæ∮\^}Á¸ãåÁåč¦&@ÁTæŏ^¦、^¦\●●c^ã,^Á;ÈÈÁç^¦≫||cÁ}åÁq[Á

geschlossen. Alternativ kann auch ein Dritter Sturz verbaut werden.

 Am Park 3

02694 Malschwitz, OT Baruth

Seite von 6

Nr./Pos.: 3A-R-OG-02

Bautechnologie obliegt dabei dem AN.

Belastung

ÖāNÁÓ^|æec'} *Ásĕ-Áså^}ÁÛc'|: Á, ãlåÁÕ|[i:>*ãlÁsà *^•^c cÁsà^¦Áså^}ÁSæec^ã: **Áså^¦ÁYæ}åÁsæb>à^¦È • cê} åã ^ÁÓ^|æ• č } * ^} kÁ Òã ^} * ^, &&@Á, ãå ÁÚ|[* |æ { ã c^|} Áà^|>&\ • &&@ã cÈ

> - Holzdach gk = 10,00 kN/m

- Rippendecke mit 3,2 x 2,0m (Lasteinzug) gk = 8,00 kN/m

-Ö^&\^}æ`~àæ`ÁsÁUÕÁ`¦ÁÖê{{`}*Ánc&ÆÆEE gk = 3,75 kN/m

- Auflast aus Brandwand im DG gk = 5,00 kN/m

c^\:\ \eartile \} \ \a^\:\ \| \a&@ \hat{O} \a_\; \ \ \a \`\ \ \ \

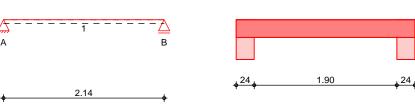
- Ó^*^@aæ\^ãxÁ`ÁÜ^çã ãi}•: ^&\^ÁFÊEÁÞÐ Á¢ÁÐÊE qk = 2,50 kN/m

Schneelast aus Dach: Schneezone 2: sk = 5,00 kN/m

Als Reserve wird die Last nur auf einen Struzbalken angesetzt. Diese Situation ist durch die : `• êc | && @ ÁOZa-æa) * ` } * Á^ ði d ÉÁ, ði Á*^*^à^} ÉÉVæær ê & @ && @ A ^¦ å^} Ár ði å BÉÓ ÁÓ æbl ^} Ás ði ÁSær Ó Ai ÁÚ ci¦: Á abfangen, weshalb die nachfolgende Bemessung stark auf der sicheren Seite liegt.

System

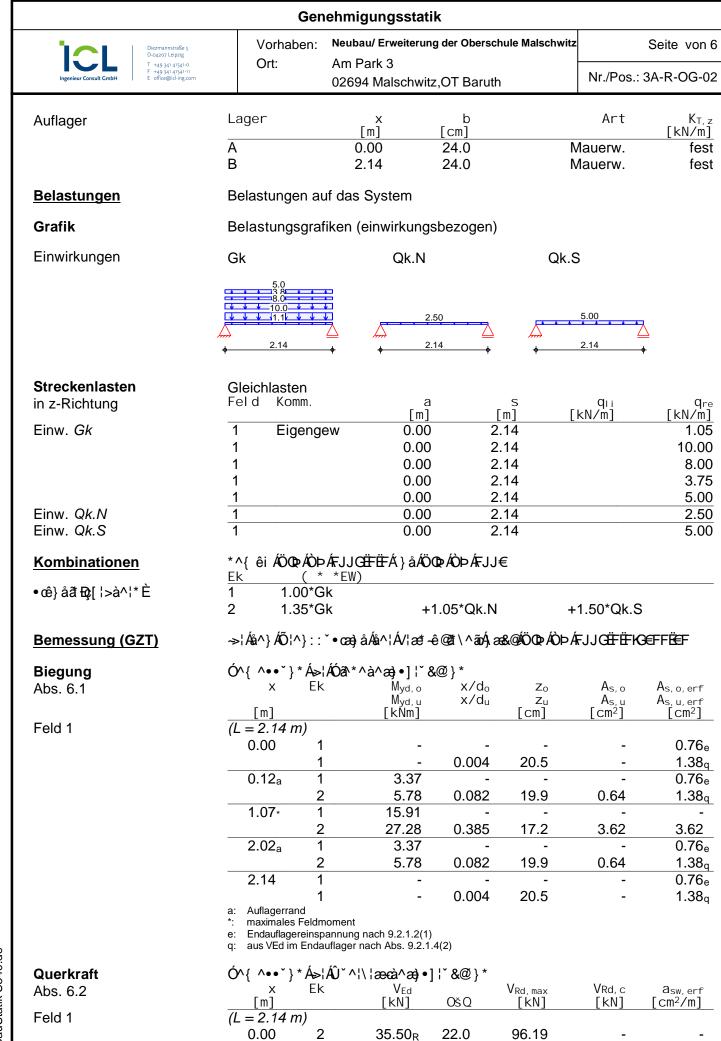
Òã,-^|ådê*^¦Á, ãoÁã&@^¦ÁÛ]aa}}, ^ãc^ÁÁ, ÁMFÊJ€(Á


| Þæ&@ÁÜ>&\•] ¦æ&@Á; ãdán\ÁÚÚŠÁārdán\ÁÚč¦: Áæþ ÁÚœæ@ànd[}•č¦: Á@¦: *•c^||^} ÈÁÒã; nÁŒ•~@*} * Áæþ Á Tã, å^•cæ), {¦å^¦`} *Áæ), Áå^}Áå^} ÁØ^¦cã; c^ã;•c`¦:ÊÁ, ^|&@¦Áå`¦&@Áå^}ÁODÐÁ*^, ê@cÁ, ãåÈ

Material

C25/30 B500A XC1 W0 F30

Òả ~ | ådê* ^ ¦ÁÇFÏ LĚ ĐO LÈEĐOFI LÈED **System** System


M 1:50

Ansicht

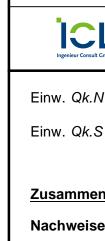
Fel d Materi al Abmessungen [m][cm] Mat./Querschnitt C 25/30 2.14 <u>17. 5/24. 0</u>

BauStatik S340.de

 0.12_{a}

2

 35.50_{R}


22.0

96.19

2.21

		Genehmigungssta	atik			
İ	Diezmannstraße 5 D-04207 Leipzig	Vorhaben: Neubau/ Erweiter	Vorhaben: Neubau/ Erweiterung der Oberschule Malschwitz Ort: Am Park 3 02694 Malschwitz,OT Baruth			
	T +49 341 4/541-0 F +49 341 4/541-1 E office@icl-ing.com					
		0.33 _v 2 35.50 1.07 1 -R 1.82 _v 2 35.47 2.02 _a 2 35.47 _R 2.14 2 35.47 _R : Auflagerrand : Abstand d vom Auflagerrand : Querkraft reduziert : Mindestbewehrung nach Abs. 9.2.2	22.0 96.12 22.0 96.12	24.97 2.21 24.97 1.46 _M 24.97 2.21 - 2.21 		
	<u>Bewehrungswahl</u>					
	`}		m ²] [m] [m]	lbd,I lbd,r Lage [m] [m]		
			.16 -0.01 2.16	0.13 0.13 1		
	[à^¦^ÆSê}*•à^、^@*}*	šé}*^}&nj\ bòx^¦ænj\^¦** ê}*^}£nj@q^Aû feld gew.		Ibd,I Ibd,r Lage		
	[a Acc; -a , & ;	[ci	[m] $[m]$ $[m]$.16 -0.06 2.26	[m] [m] 0.18 0.18 1		
		Šê}*^}Ánj\ ÈÁx^¦ænj\^¦ઁ}*• ê}*^}Énj@i^Áù	lo4i ^D			
	Lêngsbewehrung M 1:25	As [[cm]			
	5					
	2			-		
	2					
	5					
		erf. Längsbewehrung / Zugkraftdeckungslinie verl. Feldbewehrung gemäß DIN EN 1992-1-1, 9. vorhandene Längsbewehrung	2.1.4(1)			
	Û*^¦\¦ææà^¸^@*}*ÁÇÓ>*^ D	Feld xa xe [m] [m] 0. 12 0. 55 0. 55 1. 59 1. 59 2. 02	ds s [mm] [cm] », 10.0 », 15.0 », 10.0	Schn. asw [-] [cm²/m] 2 10.05 2 6.70 2 10.05		
	Nachweise (Brand)	Brandschutznachweis nach D	IN EN 1992-1-2			
	Brand	1.00*Gk 1.00*Gk 2. 1.00*Gk	+0.30*Qk.N			
		Feuerwiderstandsklasse B-seitige Beflammung		R30		
mb BauStatik S340.de	Querschnitt	Mindestabmessungen nach Ta Querschnittsbreite	ab. 5.5 b = 175	mm ⁻ 80 mm		
ลบStatik	OB&@ æà•œ̂}å^	nittlerer Achsabstand Balken x Ek fi [m] [-] OB	fi cr a #aa Q OšQ [mm]	a a _{erf} a _m [mm] [mm] [mm]		
mb B	Feld 1	0.12 1 0.6	26.95 931 0	0 0 0		

ſ		Genehmigungsstatik	
Ī	Diezmannstraße 5 D-o4207 Leipzig	Vorhaben: Neubau/ Erweiterung der Oberschule Malschwitz	Seite von 6
	T +49 341 41541+0 F +49 341 41541+11 E office@icl-ing.com	Ort: Am Park 3 02694 Malschwitz,OT Baruth	Nr./Pos.: 3A-R-OG-02
ľ		1.07 1 0.6 153.03 618 15	-12 3 35
		OE&@ æà•æ) åÁÒ∄ : ^ •œà^	
		X Ek fi fi cr ar30	a $a_{ m erf}$ $a_{ m R}$ mm] [mm] [mm]
	Feld 1		-12 3 35
		OB&@ æà•æ) åÁÒ&\•œà^	
	E-114		a mm]
	Feld 1	0.12 - 1.07 3	35
	Nachweise (GZG)	im Grenzzustand der Gebrauchstauglichkeit nach DIN EN 01	N 1992-1-1:2011-
	~~ æ æ æ œ} åæ æ	Ek (* *EW) 1 1.00*Gk +0.30*Qk.N	
	Verformungen	Begrenzungen der Verformungen im gerissenen Zustand	(Zustand II)
	Abs. 7.4	Ö^¦ÁÞæ&@^ãÁ¸ãåÁ>¦Áåã\Áˇæãēœ}åã^}ÁBemessungss Langzeitbelastung 厦&@^->@œÈ	ituationen unter
		Endkriechzahl = Ò} å• &@ ¾ å{ æi =	2.50 - -0.50 š
		zul. Endverformung $f \neg = zul.$ Differenzverformung $f = zul.$	I/500 I/500
		$egin{array}{cccccccccccccccccccccccccccccccccccc$	f_{II} , \neg $f_{\neg, zul}$ f_{zul}
	Feld 1	$\frac{[m]}{(L=2.14 m)} \frac{[kNm]}{[mm]} \frac{[mm]}{[mm]}$	[mm] [mm]
	. 6.4	1.07 1 16.34 2.19 0.95 2.42	3.99 4.28 1.57 4.28
		$\begin{array}{ll} f_{I,0}/f_{II,0} = & \text{Verformungen ungerissen/gerissen zu} \\ f_{I,\neg}/f_{II,\neg} = & \text{Verformungen ungerissen/gerissen zu} \\ f_{II} = & \text{Differenzverformungen } f_{II,\neg} - f_{II,0} \end{array}$	
	M 1:20	Grenzlinien der Verformungen f [mm]	
		1 2 3 2.2 4.0 Verformung Zustand I — Verformung Zustand II	
9p.c	5 i ZU[Yf_f} ZHY	Œ ∤æ*^¦\¦ê-&^ÁV¦ê*^¦	
mb BauStatik S340.de	Char. Auflagerkr.	charakteristische Auflagerkrêfte (je Einwirkung) Aufl . Fz, k, mi n [kN]	Fz, k, max
BauS	Einw. Gk	A 29.75	[kN] 29.75
qm		B 29.75	29.75

straße 5 Vorhaben: Ort:

 $\overline{\mathsf{A}}$

В

A

В

Neubau/ Erweiterung der Oberschule Malschwitz

2.68

2.68

5.35

5.35

Am Park 3

Genehmigungsstatik

02694 Malschwitz, OT Baruth

Seite von 6

2.68

2.68

5.35

5.35

[-]

[-]

Nr./Pos.: 3A-R-OG-02

Zusammenfassung Zusammenfassung der Nachweise

Nachweise (GZT) Nachweise im Grenzzustand der Tragfêhigkeit

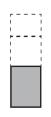
Nachweis Ort

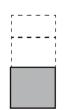
Biegung OK Querkraft OK Bewehrungswahl OK

Nachweise (Brand) Brandfall im Grenzzustand der Tragfêhigkeit

Nachwei s

Brand OK


Nachweise (GZG) Nachweise im Grenzzust. der Gebrauchstauglichkeit


Nachwei s Ort x [m] [-] Verformungsnachweis Feld 1 1.07 OK 0.93

 $\grave{O}_{A}^{\dagger} \wedge \acute{A}OE \bullet \Rightarrow @^{\ast} \} * \acute{A}str \acute{A}O^{\dagger} \circ \mathring{A} \circ$

Belastungstabelle RS-Stürze für Innenwände

Breite in cm	11,5				17,5			24		
Höhe in cm	24	36,5	49	24	36,5	49	24	36,5	49	
Auflager in cm	24	24	24	24	24	24	24	24	24	

lichte Weite in cm

1,885	28,30	50,31	72,86	54,64	98,65	144,15	62,12	132,04	190,49
2,01	25,14	44,73	64,78	49,47	87,76	128,27	57,16	117,46	171,60
2,135	22,47	40,00	57,95	44,25	78,54	114,82	52,92	105,12	153,60

Baugleiche FT- Sturze anderer Hersteller sind anwendbar unter Einhaltung der Bemessungsergebnisse.

mb BauStatik S340.de

Diezmannstraße 5 D-04207 Leipzig T +49 341 41541-0 F +49 341 41541-11 E office@ickling.com Vorhaben: Neubau/ Erweiterung der Oberschule Malschwitz

Ort: Am Park 3

02694 Malschwitz, OT Baruth

Seite von 2

Nr./Pos.: 3A-R-OG-03

Pos. 3A-R-OG-03 Neuer Durchbruch in tragender Wand ohne Hauptlast aus 8 YW Y~ 'C;

QÁåðrÁsæ*^} å^} Ár ê} å^Áş ÁJÕ-Pæ*•ÁFÁ¸ ^¦å^} Á¸ ^`^ÁÜc>¦: ^Árð¸ *^àæ ŒÁræ&@{ |*^} åÁ¸ ^¦å^} ÁåðrÁ entsprechenden Sturze blau eingewolkt markiert:

Ò• Á ǯ åÁåð Á\$ →} ` } * ^ } Á/PF€H-F01, TH103-F02 und 106-T01 neu zu schaffen.

 $\ddot{O}^{\dot{A}}\dot{O}^{\dot{A}}^{\dot{A}}\dot{O}^{\dot{A}}^{\dot{A}}\dot{O}^{\dot{A}\dot{O}}\dot{O}^{\dot{A}\dot{A}}\dot{O}^{\dot{A}}\dot{O}^{\dot{A}}\dot{O}^{\dot{A}}\dot{O}^{\dot{A}}\dot{O}^{\dot{A}}\dot{O}^{\dot{A}}\dot{O}^{\dot{A$

QĂĐơÁs^¦Á,^`^ÂÙċ ¦: Ás^¦Á\$ →}`} *Á@¦*^• ৫\|dÃ, ãåÁsðÁð Áð ^} qã&@Á\$ →}`} *Áş Ás^¦Á⁄ æ) åÁ@¦*^• ৫\|dÃ Bautechnologie obliegt dabei dem AN.

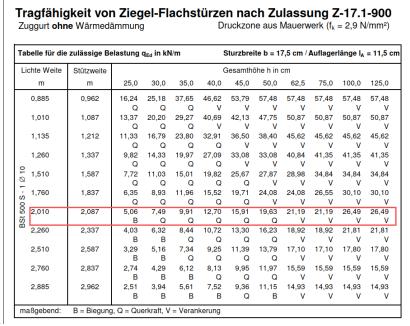
Somit unterschieden sich diese Sturzschaffung zur Position 3A-OG-R-02 nur durch den Entfall der Oā-æ) * ` } * • àæ ^ } Á⊳ ¦ Áa ð Ár æ) åÁu ÕÈ

Öða ÁÓ^|æ=c`}*Ásē Ásiða Áv`ê}å^Án¦* āsióÁs &&@Án°åði|&&@Ási°¦&@Ásiæ=ÁP[|:åæ&@ÉSsi^¦Áà^¦Áà^¦{é}à^|*^}áÁ) åÁ`{Á *^|ð|*^}ÁV^ð|Ásē•Ási^}ÁÖ^&\^}Ásà^¦ÁUÕÈ

Þæ&@ÁÜ>&\•]¦æ&@Á;ãnÁå^¦ÁUÚŠÁ•[||^}ÁsãnÁÙc>¦:^ÁsфrÁZān*^|-|æ&@c>|:^Ásĕ•*^>@óÁ;^¦å^}ÈÄÖānÁ Υ→@*}*Án¦-[|*óÁ[]•d*\œã;Á;ãnÁå^}Á[|*^}å^}ÁX[¦*æà^}K

Ø⊳¦Áå^}ÁØ|æ&@cč¦:ÁaróÁaðhÁTājå^•œĕ⊣æ*^¦|ê}*^Áş[}ÁπFÉL&{ÁayÁa^}ÁØ^}•c^¦-ÐV>¦:æ*^}Á@¦: ˘•c^||^}Áş[¦Ádem Einlegen des Sturzes.

Diezmannstraße 5 D-04207 Leipzig T +49 341 41541-0 F +49 341 41541-11 E office@icl-ing.com Vorhaben: Neubau/ Erweiterung der Oberschule Malschwitz


Ort: Am Park 3

02694 Malschwitz, OT Baruth

Seite von 2

Nr./Pos.: 3A-R-OG-03

Ó^{ ^••`}*•œà^||^Ánãj^•Án②læ&@c`l: ^•Á>¦Áræ)啜ê¦\^ÁåMÁFÏÉE&{K

Nach der allgemeinen Bauaufsichtlichen Zulassung dieser Sturze mit der Zulassungsnummer Z-17.1-900 sind die Ziegelsturze mind. der Feuerwiderstandsklasse F90-A nach DIN 4102-2 zuzuordnen. Auszug aus der Baua. Zulassung:

Seite 13 der allgemeinen bauaufsichtlichen Zulassung Nr. Z-17.1-900 vom 18. Februar 2008

<u>Tabelle 4:</u> Feuerwiderstandsklassen nach DIN 4102-2

Zei- le	Konstruktions- merkmale für die Zuggurte der	Mindest-			Mindestbreite b in mm Feuerwiderstandsklasse-Benennung 1)				
	Flachstürze				F 30-A	F 60-A	F 90-A	F 120-A	
1	Cmn E D	Zuggurt höhe h [mm]	Beton- deckung c _{min} [mm]	Schalen- dicke s _{min} [mm]	A second				
1.1	Zuggurte mit schalenförmigen Ziegel- Formsteinen	71	15	15	(115)	(115)	(115)	-	
		113	20	15	115	115	175 (115)	-	

Die () - Werte gelten für Stürze mit 3-seitigem Putz nach DIN 4102-4, Abschnitt 4.5.2.10. Auf den Putz an der Sturzunterseite kann bei Anordnung von vermörtelten Stahlzargen oder Holzzargen verzichtet werden.

mb-Viewer Version 2022 - Copyright 2021 - mb AEC Software GmbH

iewer Version 2022 - Copyright 2021 - mb AEC Software (

Genehmigungsstatik

Diezmannstraße 5 D-04207 Leipzig T +49 341 41541-0 F +49 341 41541-11 E office@icl-ing.com Vorhaben: Neubau/ Erweiterung der Oberschule Malschwitz

Ort: Am Park 3


02694 Malschwitz, OT Baruth

Seite von 7

Nr./Pos.: 4A-R-EG-02

Pos. 4A-R-EG-02 Neuer Sturz in tragender Wand mit Hauptlast aus Decke ~ VYf '9;

QÁ&anÁdæt^}å^}Ávrê}å^Áq ÁðÕ-Pæĕ•ÁGÁ¸^¦å^}Á¸^`^ÁÜ⇔¦:^Ánã¸*^àæŏdÁnæ&@[|*^}åÁ¸^¦å^}ÁsanÁ ^}œ]¦^&@}å^}Ás--}``}*^}Áa|æ´Ánã¸*^,[∥\óÁ;æb\an\dK

ÖðrÁ\$ --}`}*^}Á€CF-F04 und FL002-V€FÁr¢^||^}Árð;^Áx^¦à!^ãx^¦`}*Áa:¸ÈÁx^¦•&@ðrà`}*Áa^¦Á\$ --}`}*ÁaæÈÈÖæÁaðr•^Árê}å^Áa°¦&@ÁaðrÁÖ^&\^Áaà^¦ÁÖÕÁ;æi*^à|æ&@Áa^|æe¢^ó,^¦å^}ÊÁ; `••Á@ðr¦Ásà^¦Áa^}Á.
•&@æ-^}å^}Á\$ --}`}*^}Árð;^Árð;^Árða-æ)*`}*Áa^¦Ár æ)åÁr¦-[|*^}ÈÁO•Á,ðaåÁaæeÁ[|*^}å^ÁK[|*^@}Á
vorgeschlagen:

(全) * () *

Diezmannstraße 5 D-04207 Leipzig T +49 341 41541-0 F +49 341 41541-11 E office@icl-ing.com Vorhaben: Neubau/ Erweiterung der Oberschule Malschwitz

Ort: Am Park 3

02694 Malschwitz, OT Baruth

Seite von 7

Nr./Pos.: 4A-R-EG-02

Belastung

Öða ÁÓ^|æ c'} * Áæ Á&^} ÁÚc'|: Á¸ ãla Á⇒à^|Á&^} ÁŠæ c^ã;: ` * Á&^|ÁY æ) a ÁÁ;} a ÁÖ^&\ ^ Á&æ>à^|Áæ) * ^ • ^ c dè • œ̂} a ãl ^ ÁÓ^|æ c'} * ^} kÁ Òãl^} * ^ . &&@Á¸ ãla ÁÚ|[* |æ{ { ãl c^|} Áb^|>&\ • &&@ã dè

- Holzdach gk = 10,00 kN/m

- Rippendecke OG mit 3,2 x 2,5m (Lasteinzug) gk = 8,00 kN/m

-Ö^&\^}æ`~àæ`ÁsÁUÕÁ.`¦ÁÖê{{``}*Ánc&ÀÁTÉE €Á¢ÁCÉE{ gk = 3,75 kN/m

- Rippendecke EG mit 3,2 x 2,5m (Lasteinzug) gk = 8,00 kN/m

ç^\:\earliak@\AOa, a\`}*K

 $-\acute{O}^* \wedge @aæ \wedge \mathring{a}\acute{A} \mathring{A} \mathring{U} \wedge \mathring{c} \mathring{a} \mathring{a} \} \bullet : \ \ \wedge \mathring{A} F \widehat{E} \mathring{A} \triangleright F) \quad \mathring{A} \mathring{c} \mathring{A} = 2,50 \text{ kN/m}$

´Áp`c |æ•αÂÛ&@ |¦ê`{ ^Án+Êi€ÁiÞÐ(Á¢ÁGÉi{ qk = 2,50 kN/m

Ù&@^^|æ oÁæě•ÁÖæ&@Á ãååÁç^¦}æ&@ê•• ã dÈ

System

Òã, ~ | ådê* ^ ¦ Á(ãoÁa&@ ^ ¦ ÁÚ] æ) } , ^ão^ Á, ÁMÁGÊE€(È

$$\begin{split} &\text{pass.}@\tilde{AU} > \& \text{l} \cdot \text{l} \cdot \text{ass.}@A, &\text{ass.} \cdot \text{ass.} \cdot \text{ass.$$

Material

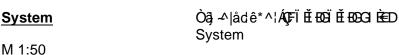
C25/30 B500A F30

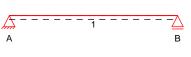
BauStatik S340.de

Genehmigungsstatik Ort:

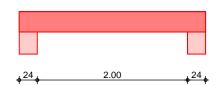
Neubau/ Erweiterung der Oberschule Malschwitz Vorhaben:

Am Park 3


02694 Malschwitz, OT Baruth


Seite von 7

b/h


[cm]

Nr./Pos.: 4A-R-EG-02

Ansicht

Abmessungen Mat./Querschnitt Fel d [m]2.24

Materi al C 25/30

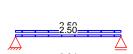
Auflager

Lager	X	b
J	[m]	[cm]
A	0.00	24.0
В	2.24	24.0

 $K_{T,z}$ [kN/m] Mauerw. fest Mauerw. fest

Art

Belastungen


Belastungen auf das System

Grafik

Belastungsgrafiken (einwirkungsbezogen)

Einwirkungen

Qk.N

Streckenlasten

Einw. Gk

Einw. Qk.N

G	lei	ch	ılasten

2.24

Fel d	Komm.	а	S	qı i	q re
		[m]	[m]	[kN/m]	[kN/m]
1	Eigengew	0.00	2.24		1.20
1		0.00	2.24		10.00
1		0.00	2.24		8.00
1		0.00	2.24		3.75
1		0.00	2.24		8.00
1		0.00	2.24		3.75
1		0.00	2.24		2.50
1		0.00	2 24		2 50

Kombinationen

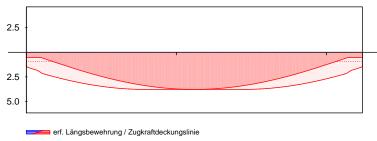
^{ êi ÁÖ Φ ÁÒ ÞÁFJJ GËFËFÁ } å ÁÖ Φ ÁÒ ÞÁFJJ€ Ek (*EW)

•œ} åð £0[¦>à^¦* È

1.00*Gk 1 2 1.35*Gk

+1.50*Qk.N

Bemessung (GZT)


 \Rightarrow $|A_{A}^{\circ}\rangle |A_{A}^{\circ}\rangle = (2\pi)^{\circ} |A_{A}^{\circ}\rangle |$

x [m] = 2.24 n 0.00 0.12a 1.12* 2.12a 2.24 Auflagerrar maximales Endauflageraus VEd im \[\lambda \lambda \limbda \limbd	Am 026 * Á> Á Ó Ó Ó Ek m) 1 1 2 1 2 1 2 1 1 creinspannur r Endauflage * Á> Á Á Ó É K	* ^ à ^ æ •] ` e	2,OT Baruth &@ } *			As, o, erf As, o, erf As, u, erf [cm ²] 0.80e 1.77q 0.80e 1.77q - 3.78 0.80e 1.77q 0.80e 1.77q
x [m] = 2.24 n 0.00 0.12a 1.12* 2.12a 2.24 Auflagerrar maximales Endauflageraus VEd im \[\lambda \lambda \limbda \limbd	* Á>¦ÁÔã\ Ek m) 1 1 2 1 2 1 2 1 1 creinspannur n Endauflage * Á>¦ÁÛ` Ek	* ^ à ^ a) •] ` a Myd, o Myd, o Myd, u [kNm]	%@}* x/do x/du - 0.003 - 0.074 - 0.344 - 0.074 - 0.003	Zo Zu [CM] - 24.0 - 23.3 - 20.6 - 23.3 - 24.0	As, o As, u [cm ²] - - 0.65 - 3.78 - 0.65	As, o, erf As, u, erf [cm ²] 0.80e 1.77q 0.80e 1.77q - 3.78 0.80e 1.77q 0.80e 1.77q
x [m] = 2.24 n 0.00 0.12a 1.12* 2.12a 2.24 Auflagerrar maximales Endauflageraus VEd im \[\lambda \lambda \limbda \limbd	Ek n) 1 1 2 1 2 1 2 1 1 2 1 the second of	Myd, o Myd, u [kNm] 4.41 6.91 21.77 34.09 4.41 6.91	x/d _o x/d _u - 0.003 - 0.074 - 0.344 - 0.074 - 0.003	Zu [cm] - 24.0 - 23.3 - 20.6 - 23.3 - 24.0	As, u [cm²] 0.65 - 3.78 - 0.65 - VRd, c	As, u, erf [cm ²] 0.80e 1.77q 0.80e 1.77q - 3.78 0.80e 1.77q 0.80e 1.77q
x [m] = 2.24 n 0.00 0.12a 1.12* 2.12a 2.24 Auflagerrar maximales Endauflageraus VEd im \[\lambda \lambda \limbda \limbd	Ek n) 1 1 2 1 2 1 2 1 1 2 1 the second of	Myd, o Myd, u [kNm] 4.41 6.91 21.77 34.09 4.41 6.91	x/d _o x/d _u - 0.003 - 0.074 - 0.344 - 0.074 - 0.003	Zu [cm] - 24.0 - 23.3 - 20.6 - 23.3 - 24.0	As, u [cm²] 0.65 - 3.78 - 0.65 - VRd, c	As, u, erf [cm ²] 0.80e 1.77q 0.80e 1.77q - 3.78 0.80e 1.77q 0.80e 1.77q
[m] = 2.24 m 0.00 0.12a 1.12* 2.12a 2.24 Auflagerrar maximales Endauflager aus VEd im \[\lambda \lambda \limbda	n) 1 1 2 1 2 1 2 1 1 2 1 nd Feldmomen reinspannur n Endauflage * Á>¦ÁÛ* Ek	Myd, u [kNm] - 4.41 6.91 21.77 34.09 4.41 6.91	0.003 - 0.074 - 0.344 - 0.074 - 0.003	Zu [cm] - 24.0 - 23.3 - 20.6 - 23.3 - 24.0	As, u [cm²] 0.65 - 3.78 - 0.65 - VRd, c	As, u, erf [cm ²] 0.80e 1.77q 0.80e 1.77q - 3.78 0.80e 1.77q 0.80e 1.77q
2.24 Auflagerrar maximales Endauflager aus VEd im \[\begin{align*}	1 1 2 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	4.41 6.91 21.77 34.09 4.41 6.91 	0.074 - 0.344 - 0.074 - 0.003	24.0 - 23.3 - 20.6 - 23.3 - 24.0	- - 0.65 - 3.78 - 0.65 - -	0.80 _e 1.77 _q 0.80 _e 1.77 _q - 3.78 0.80 _e 1.77 _q 0.80 _e 1.77 _q
0.00 0.12a 1.12* 2.12a 2.24 Auflagerrar maximales Endauflageraus VEd im \[\lambda \cdot \	1 1 2 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	6.91 21.77 34.09 4.41 6.91 	0.074 - 0.344 - 0.074 - 0.003	23.3 - 20.6 - 23.3 - 24.0	3.78 - 0.65 - - -	1.77 _q 0.80 _e 1.77 _q - 3.78 0.80 _e 1.77 _q 0.80 _e 1.77 _q
0.12a 1.12* 2.12a 2.24 Auflagerrar maximales Endauflage aus VEd im \[\lambda \limbda \li	1 1 2 1 2 1 2 1 1 2 1 1 1 nd Feldmomenereinspannurnen Endauflage * ÁÞÍÁÛ*	6.91 21.77 34.09 4.41 6.91 	0.074 - 0.344 - 0.074 - 0.003	23.3 - 20.6 - 23.3 - 24.0	3.78 - 0.65 - - -	1.77 _q 0.80 _e 1.77 _q - 3.78 0.80 _e 1.77 _q 0.80 _e 1.77 _q
1.12* 2.12a 2.24 Auflagerrar maximales Endauflage aus VEd im	1 2 1 2 1 2 1 1 2 1 1 nd Feldmomen reinspannur n Endauflage * ÁÞ ÁÛ * / Ek	6.91 21.77 34.09 4.41 6.91 	0.074 - 0.344 - 0.074 - 0.003	23.3 - 20.6 - 23.3 - 24.0	3.78 - 0.65 - - -	0.80e 1.77 _q - 3.78 0.80e 1.77 _q 0.80e 1.77 _q
1.12* 2.12a 2.24 Auflagerrar maximales Endauflage aus VEd im	2 1 2 1 2 1 1 nd Feldmomen ereinspannur n Endauflage * Á>¦ÁÛ* Ek	6.91 21.77 34.09 4.41 6.91 	0.344 - 0.074 - 0.003),4(2)] * &@ } *	20.6 - 23.3 - 24.0	3.78 - 0.65 - - -	1.77 _q - 3.78 0.80 _e 1.77 _q 0.80 _e 1.77 _q
2.12a 2.24 Auflagerrar maximales Endauflage aus VEd im	1 2 1 2 1 1 nd Feldmomen Feldmomen Feldmomen Feldmomen Endauflage	21.77 34.09 4.41 6.91 	0.344 - 0.074 - 0.003),4(2)] * &@ } *	20.6 - 23.3 - 24.0	3.78 - 0.65 - - -	3.78 0.80e 1.77q 0.80e 1.77q
2.12a 2.24 Auflagerrar maximales Endauflage aus VEd im	2 1 2 1 1 nd Feldmomen Feldmomen Feldmomen Endauflage	34.09 4.41 6.91 	0.074	- 23.3 - 24.0	- 0.65 - - VRd, c	0.80 _e 1.77 _q 0.80 _e 1.77 _q
2.24 Auflagerrar maximales Endauflage aus VEd im	1 2 1 1 nd Feldmomen reinspannur n Endauflage * Á> ÁÛ * / Ek	4.41 6.91 	0.074	- 23.3 - 24.0	- 0.65 - - VRd, c	0.80 _e 1.77 _q 0.80 _e 1.77 _q
2.24 Auflagerrar maximales Endauflage aus VEd im	2 1 1 nd Feldmomen ereinspannur n Endauflage * Á Á Á Á Č	6.91	0.003) .4(2)] ¦ * &@} *	- 24.0 V _{Rd, max}	- - VRd, c	1.77 _q 0.80 _e 1.77 _q
Auflagerrar maximales Endauflage aus VEd im A A A A A A A A A A A A A A A A A A A	1 1 nd Feldmomen ereinspannur n Endauflage * Á>¦ÁÛ* Ek	- - ng nach 9.2.1.2(1 er nach Abs. 9.2.1 ^¦∖¦æఁà^æ) • VEd	0.003) .4(2)] ¦ * &@} *	- 24.0 V _{Rd, max}	- - VRd, c	0.80 _e 1.77 _q
Auflagerrar maximales Endauflage aus VEd im A A A A A A A A A A A A A A A A A A A	1 nd Feldmomen Preinspannur n Endauflage * Á>¦ ÁÛ * Ek n)	ng nach 9.2.1.2(1) er nach Abs. 9.2.1 ^¦∖¦æcà^æ}• V _{Ed}) .4(2)] ¦ * &@ } *	V _{Rd, max}		1.77 _q
maximales Endauflage aus VEd im	nd Feldmomen Freinspannur n Endauflage * Á>¦ ÁÛ Ek	ng nach 9.2.1.2(1) er nach Abs. 9.2.1 ^¦∖¦æcà^æ}• V _{Ed}) .4(2)] ¦ * &@ } *	V _{Rd, max}		asw, erf
maximales Endauflage aus VEd im	Feldmomen ereinspannur n Endauflage * Á Á Á Á Č Ek	ng nach 9.2.1.2(1) er nach Abs. 9.2.1 ^¦∖¦æcà^æ}• V _{Ed}	.4(2)] ` & @ } *	V _{Rd, max} 「kN1		
$\begin{bmatrix} x \\ [m] \end{bmatrix}$ = 2.24 m 0.00	Ek n)	$V_{\sf Ed}$		V _{Rd, max} ΓkΝΊ		
[m] $L = 2.24 n$ 0.00	n)	V _{Ed} [KN]	Oš Q	V _{Rd, max} ΓkΝΊ		
2 = 2.24 n 0.00	•	[KIN]	USQ	IKNI	[KIN]	[CM ² /M]
0.00	•			[10.1]		
	,	44.04	20.7	440.00		
		41.31 _R	20.7	113.03	-	4.05
0.12 _a	2	41.31 _R	20.7	113.03	-	1.95
0.36 _v	2	41.31	20.7	113.03	26.69	1.95
1.12	1	- R	18.4	102.64	26.69	1.46 _M
1.88_{v}	2	41.31	20.7	113.03	26.69	1.95
2.12_{a}	2	41.31 _R	20.7	113.03	-	1.95
2.24	2	41.31 _R	20.7	113.03	-	-
Querkraft re	vom Auflage eduziert	errand ch Abs. 9.2.2				
el d	gev	N. /	As a	I	I bd, I I	bd, r Lage
	Ü	[cm ²		[m]	[m]	[m]
	; 6' (» ⁹	% 6.1	16 -0.01	2.26	0.13	0.13 1
ê}*^}Á§}∖ ÈÁx^	^¦æ}\^¦*}	ê}*^}EÃ(@}^ÁÚc4	i ^D			
el d	gev				lbd, I l	bd,r Lage
			∠ Imi	ı m ı		
	; 6'' » 9				() 18	J. 10 I
	eld [}] *^}Æş∖ ÈXx eld	; 6 (» ⁽ xê}*^}Án,\ ĎX^¦æ)\^¦*}*•	[cm ;6'(»%(6.1 'ê}*^}Áş\ ÈX^¦æ}\^¦*'}*• ê}*^}Êa,@;^Aûoa eId gew. /	[cm²] [m]; 6 (» % 6.16 -0.01 (e) *^} / (a) \ (^; * • é) * ^) É, @, ^ ÁÚ chí ^ D el d gew. As a	[cm²] [m] [m]; 6 (»% 6.16 -0.01 2.26 6.16	[cm²] [m] [m] [m] [m] ; 6 (»%(6.16 -0.01 2.26 0.13 (2

mb BauStatik S340.de

Nr./Pos.: 4A-R-EG-02

[cm]

verl. Feldbewehrung gemäß DIN EN 1992-1-1, 9.2.1.4(1)

) Fel d	х а [m]	Xe [m]	ds [mm]	s [cm]	Schn. [-]	asw [cm²/m]
1	0. 12 0. 56	0. 56 1. 68	» , » ,	10. 0 15. 0	2 2	10. 05 6. 70
	1. 68	2. 12	» ,	10. 0	2	10. 05

Brandschutznachweis nach DIN EN 1992-1-2

+0.30*Qk.N

R30

Mindestabmessungen nach Tab. 5.5

b =

175 mm ⁻ mm

aerf a_{m} OB#aa Q oš Q [mm] [mm] [mm] [mm] 30.53 895 0 0 0 0 177.57 598 15 -10 5 35

OB#aa ^{fi} **a**R30 aerf oš Q [mm] [mm] [mm] [mm] 177.6 598 -10

OE&@ æà•œa) åÁÒ&√•œêà^

x [m] asd, erf [mm] [mm] 0.12 1.12 5 35

Nachweise (GZG)

im Grenzzustand der Gebrauchstauglichkeit nach DIN EN 1992-1-1:2011-

(* *EW) 1.00*Gk +0.30*Qk.N æ æ æ æ æ a æ

Feld 1

Neubau/ Erweiterung der Oberschule Malschwitz Vorhaben:

Am Park 3 Ort:

02694 Malschwitz, OT Baruth

Seite von 7

š

[kN]

38.87

38.87

[-]

Nr./Pos.: 4A-R-EG-02

Begrenzungen der Verformungen im gerissenen Zustand (Zustand II)

Ö^¦Ápæ&@ ^ã Á đảÁ>¦Áåð Á *æ Æ œ} åð ^} ÁBemessungssituationen unter Langzeitbelastung å ¦&@ ^ → @dÈ

Endkriechzahl Ò} å• &@ ¾ å{ æi

2.50 -0.50

zul. Endverformung

1/500

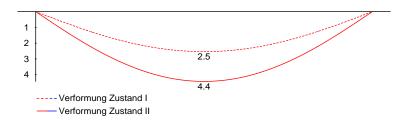
zul. Differenzverformung

ΕL

1/500

Feld 1

X	LK.	IVIEd	11,7		111, 7	I ¬, zul
			f _{I,0}	f _{II,0}	fıı	f_{zul}
[m]		[kNm]	[mm]	[mm]	[mm]	[mm]
(L = 2.24 r)	n)					
1.12	1	22.71	2.54		4.43	4.48
			0.98	2.59	1.84	4.48


 $f_{1,0}/f_{11,0} =$ $f_{I,} \neg / f_{II,} \neg =$ $f_{II} =$

Verformungen ungerissen/gerissen zum Zeitpunkt t = 0 Verformungen ungerissen/gerissen zum Zeitpunkt t = ¬

Differenzverformungen f_{II.7} - f_{II.0}

M 1:25

Grenzlinien der Verformungen f [mm]

5 i ZU[Yf_f} ZhY

Einw. Gk

OE +æ* ^ |\ | ê -æ^ ÁV | ê * ^ |

Char. Auflagerkr. charakteristische Auflagerkrêfte (je Einwirkung)

Aufl. $Fz,\,\underline{k},\,\underline{mi}\,\underline{n}$ Fz, k, max [kN] Ā 38.87 В 38.87 Einw. Qk.N

Α 5.60 5.60 В 5.60 5.60

Zusammenfassung

Zusammenfassung der Nachweise

Nachweise (GZT) Nachweise im Grenzzustand der Tragfêhigkeit

0rt Nachwei s [-] Biegung OK Querkraft OK OK Bewehrungswahl

Nachweise (Brand)

Brandfall im Grenzzustand der Tragfêhigkeit

Nachwei s

Brand OK

BauStatik S340.de

Vorhaben: Neubau/ Erweiterung der Oberschule Malschwitz

Genehmigungsstatik

Ort: Am Park 3

02694 Malschwitz, OT Baruth

Seite von 7

Nr./Pos.: 4A-R-EG-02

Nachweise (GZG)

ÒÕÁSI ÁPæĕ•ÁFÁ, &&@Á 4* | &&@ÉÁ

Nachweise im Grenzzust. der Gebrauchstauglichkeit

Nachwei s $\frac{\text{Ort}}{\text{m}} \times \frac{\text{m}}{\text{m}}$ [-] Verformungsnachweis Feld 1 1.12 OK 0.99

Òã,^ÁŒ•>@`}*Ás;†ÁØ^¦œã¢°ã;É;Ás;oÁs;*'}åÁs;ÁŐ^¦ã;*^}ÁP4@ÁsãÁ`¦ÁNSÁs^¦ÁÜ[@àæěå^&\^Ásà^¦Á

nb-viewer version 2022 - Copyrignt 2021 - mb AEC Software G

p-viewer version 2022 - Capyrignt 2021 - mb AEC Sonware Gribh

ICL Ingenieur Consult GmbH

Diezmannstraße 5 D-04207 Leipzig T +49 341 41541-0 F +49 341 41541-11 E office@icl-ing.com

Genehmigungsstatik

Vorhaben: Neubau/ Erweiterung der Oberschule Malschwitz

Ort: Am Park 3

02694 Malschwitz, OT Baruth

Seite von 2

Nr./Pos.: 4A-R-EG-03

Pos. 4A-R-EG-03 Neuer Durchbruch in tragender Wand ohne Hauptlast aus 8 YW Y~ '9;

QÁåàAÁa²^} å^} Å^ ê} å^Áą ÁÒÕ-Haus 2 wird ein neuer Sturz eingebaut. Nachfolgend wird die ^} œ] | ^&@} å^Á\$ --} ``} *Áa|æ`Á^ā; *^, [|\ oÁ; æ\ ðA; dK

Ò - Á o dà a A - } `} * ÁØŠ€€ + T01 zu verschieben und anzuheben. Somit ist der Sturz neu auszubilden. ÖæÁsa • ^ Á⁄ அ å Áš ¦ & @Ása ÁÖ ^ &\ ^ Ásà ^ ¦ ÁÒÕ Á && @Á(æ * ^ à | & @Ás ^ |æ ் o Á, ã å ÉÁ(ັ • • Á@A ¦ Á ^ ā ^ ÁØā æ) * `} * Ás ^ ¦ Á Wand erfolgen. Es wird das folgende Vorgehen vorgeschlagen:

 $\ddot{O}^{\dot{A}}\dot{O}^{\dot{A}\dot{O}^{\dot{A}}\dot{O}^{\dot{A}}\dot{O}^{\dot{A}}\dot{O}^{\dot{A}}\dot{O}^{\dot{A}}\dot{O}^{\dot{A}}\dot{O}^{\dot{A}}\dot{O}^{\dot{A}\dot{O}}\dot{O}^{\dot{A}}\dot{O}^{$

Ò•Ána cá ʿÁna æ&@^}Éda æ•Án \ÁK[¦@æ)å^}^ÁDcč¦:Án ^¦Ás ~} `} *Ánĕ•ÁDæ@pà^q[}Á@¦*^•c^||cána cá }åÁ
¸[{ 4*|&R@Án ÁDæ):^}Án}c^\}cá \Án A\can A

ŒÃQơü^¦Á¸^`^ÁÛċ¦:Á¾^¦Á\$ →¸`}*Á@¦*^• ơ\∥đø ãåÁ¾ã^Áã^} ¢ã&@Á\$ →¸`}*Á¾Á¾^¦Á⁄ æ;åÁ@¦*^• ơ\∥đÃ.

Bautechnologie obliegt dabei dem AN.

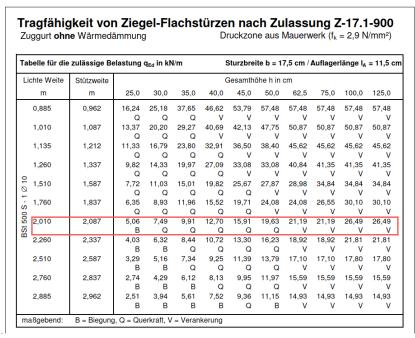
Somit unterschieden sich diese Sturzschaffung zur Position 4A-EG-R-02 nur durch den Entfall der Oā-æ) * * } * • àæ ^ } Á> ¦ Áà ð Á æ) åÁÔÕÈ

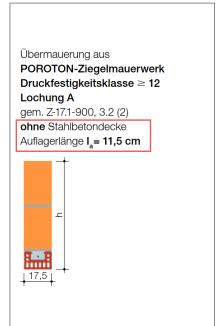
Þæ&@AÜ>&\•]¦æ&@Á(ãnÁa^¦ÁUÚŠÁa[||^}Áa&àAÙc>¦:^Áæ;ÞÁZ&ò*^|-|æ&@c>|:^Áæ;•*^>>@óÁ,^¦å^}ÈÄÖ&)Á Υ→@`}*Án¦-[|*oÁa[}•d`\œã,Á(ãnÁa^}Á[|*^}å^}ÁX[¦*æà^}K

Ø>¦Áå^}ÁØ|æ&@cč¦:ÁánóÁsãhÁTājå^•œë~¦æ≛^¦|ê}*^Áş[}ÁFFÉ£&{ÁsjÁå^}ÁØ^}•c^¦-ÐV>¦:æ±*^}Á@¦:č•c^||^}Ág[¦Á

Diezmannstraße 5 D-04207 Leipzig T +49 341 41541-0 F +49 341 41541-11 E office@icl-ing.com Vorhaben: Neubau/ Erweiterung der Oberschule Malschwitz

Ort: Am Park 3


02694 Malschwitz, OT Baruth


Seite von 2

Nr./Pos.: 4A-R-EG-03

dem Einlegen des Sturzes.

Ó^{^••`}*•œaà^||^Ánãj^•Á¤[æ&@cč¦:^•Á⇒¦ÁYæ);啜ê¦\^ÁåMÁFÏÉÉ&{K

Nach der allgemeinen Bauaufsichtlichen Zulassung dieser Sturze mit der Zulassungsnummer Z-17.1-900 sind die Ziegelsturze mind. der Feuerwiderstandsklasse F90-A nach DIN 4102-2 zuzuordnen. Auszug aus der Baua. Zulassung:

Seite 13 der allgemeinen bauaufsichtlichen Zulassung Nr. Z-17.1-900 vom 18. Februar 2008

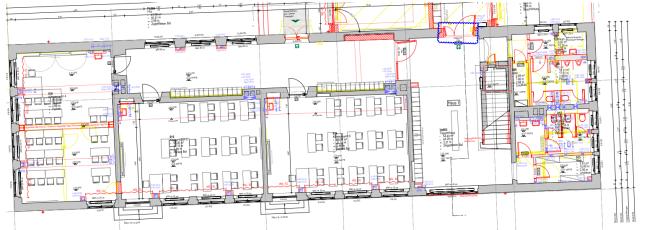
<u>Tabelle 4:</u> Feuerwiderstandsklassen nach DIN 4102-2

Zei- le	Konstruktions- merkmale für die Zuggurte der	Mindest-			Mindestbreite b in mm Feuerwiderstandsklasse-Benennung ()				
	Flachstürze				F 30-A	F 60-A	F 90-A	F 120-A	
1	Cmm E	Zuggurt höhe h [mm]	Beton- deckung c _{min} [mm]	Schalen- dicke s _{min} [mm]					
1.1	Zuggurte mit	71	15	15	(115)	(115)	(115)	-	
	schalenförmigen Ziegel- Formsteinen	113	20	15	115	115	175 (115)	-	

Die () - Werte gelten für Stürze mit 3-seitigem Putz nach DIN 4102-4, Abschnitt 4.5.2.10. Auf den Putz an der Sturzunterseite kann bei Anordnung von vermörtelten Stahlzargen oder Holzzargen verzichtet werden.

Vorhaben: Neubau/ Erweiterung der Oberschule Malschwitz Ort:

Am Park 3


02694 Malschwitz, OT Baruth

Seite von 7

Nr./Pos.: 3A-R-EG-02

Neuer Sturz in tragender Wand mit Hauptlast aus Decke Pos. 3A-R-EG-02 VYf '9;

Q猈燾*^} å^} ÁY ê} å^Á§ ÁÖÕ-Haus 1 wird ein neuer Sturz eingebaut. Nachfolgend eingewolkt markiert:

Ò ÁB ơÁB ÂNÁS →} `} *^}ÁP€€HV€FÁ,^`Á `Á&@œ_^}ĒÐÕ^}æ ^¦Á, ãåÁB^¦ÁÛc'; ÁN @ à^}Á}åAB ÀS →}`} *Á verschoben.

ÖzaÁsáð • ^ Áv za) å Ást ¦ & @Ásáð ÁÖ ^ &\ ^ Ásà ^ ¦ ÁÒÕ Á; zai: * ^ à | && @Ás ^ | zai: @ós ^ | Yan)åÁn¦-[|*^}ÈÁÖanÁTæqcã[ae|^Á\$--}*}*•à¦^ãc^Á;ãåÁ;ãd∕GÊE€[Áa&@o^¦ÁÓ¦^ãc^Án¦{ãco^|dÉA Es wird das folgende Vorgehen vorgeschlagen:

FÉÀÒ•Á,^¦å^}Á,_^ãÁ,|^ã,^Á/&@^&\ã^Á&@\AŠ4&@¦Á§,Á&ãAÁY æ);åÁ*^•&@æt^}ÉÁå*¦&@ÁsãAÁ>,^ã•Áhã,Ákæt-ê@t^¦Á Óæl\^} Á!^• c^&\ cÁ!} åÁ; ãÁÜc>c ^} Á§; ÁÕ^àê * å^ã;} ^!^} Á!} åÁê * i ^!^} Á!^• ã&@!cÁ; ãåÈ `à^¦Ásað ÁÓæ4\^}Á§Ás^¦ÁYæ);åÁ;}åÁs}åÁsð ÁÚœæ@•o-c^}Ájði:^}Ásað ÁS¦ê-e^Ásæ)}Á;ê@^}åÁs^¦Á Óæĕ{ææi}ææ@;^}Án;æ&@Áæĕi^}Áa;;ÈÁajÁaðaÁs^||^¦å^&\^ÈÁMj&^¦ÁásðAÚc>c^}ÁajÁÖÕÁasoÁnjā,^Á Lastverteilungsbalken einzubauen, um jeweils mind. 3 Rippen der Kellerdecke zu belasten. à^¦Á\$a>ÁÜā[]^}Á, ^¦å^}Á\$a>ÁŠæec^}Á\$aa}}Á¸Á a>å^¦Á\$AŠA>ÓN|^¦; æ}åÁ>ã,*^|Æ&òÁŠ

QHÀÒ•Á, đả ÁB 20 Á\$ → ` } * Á⇒ | ÁB^ } ÁÙ č |: ÁB ÁB^ | ÁV 20) å Á 3 ãÁ ` • êc | 28.@ | ÁOE | det ^ | | ê } * ^ Ág | } ÁB ^ ãã • ^ ãã ÁG & Á ã Ásã Ás → `} * Ásã * ^àæ óÁ} åÁ¦ææ &@>••ã Ásě•*^\^ãdÉÖæ)æ&@Á¦↓|*óÁsæ Á¦^ã c^{{ ^}å^Ás^¦Á anderen Wandseite. Es folgt wiederum der Einbau des Sturzes und das Auskeilen. Der Sturz bzw. die Ùo>|:^Á,^|å^}Áæĕ~Á^ã,Á¦ã;&@•ÁT4¦&|à^oóÁg,ÁOE-|æ*^|à^|^&&@Á^|^*dĒÖ^|ÁT4¦&|Á, *••Á,4*|&&@óÁ å!`&\.^•oÁ}åÁ&@ ãå+^ãÁ^ã ÈÒ•Á ãåÁN; ơ!•đ]+ 4¦ơ/Á{]+ @^}È Ö^¦ÁÓ^¦^&&@Á、ã&@}Áå^}Áå^ãå^}Áùoãå^}ÁÙoč¦:àæ∮\^}Á¸ãåÁåč¦&@ÁTæŏ^¦¸^¦\●●c^ã,^Á;ÈÈÁç^¦≫||cÁ}åÁq[Á geschlossen. Alternativ kann auch ein Dritter Sturz verbaut werden.

Diezmannstraße 5 D-04207 Leipzig T +49 341 41541-0 F +49 341 41541-11 E office@icl-ing.con Vorhaben: Neubau/ Erweiterung der Oberschule Malschwitz

Ort: Am Park 3

02694 Malschwitz, OT Baruth

Seite von 7

Nr./Pos.: 3A-R-EG-02

Belastung

Öða ÁÓ^|æ c'} * Áæč Á&^} ÁÛc'|: Á¸ ãlåÁ⇒à^|Á&^} ÁŠæ c^ã;: ` * Á&^|ÁY æ¸) å ÁK} å ÁÖ^&\ ^ Á&æ>à^|Áæ¸) *^•^c cÈ • cê} å ãt ^ ÁÓ^|æ c'} *^} kÁ Òāt^} *^_ && @Á¸ ãlåÁÚ|[* |æ; { ã; c^|} Á&^|>&\ • && @ãt cÈ

- Holzdach gk = 10,00 kN/m

- Rippendecke OG mit 3,2 x 2,5m (Lasteinzug) gk = 8,00 kN/m

- Ö^&\^}æ`~àæ`ÁsÁdJÕÁ.`¦ÁÖê{{``}*Árœ&ÆHÉE€Á¢ÁŒÉ{ gk = 3,75 kN/m

- Rippendecke EG mit 3,2 x 2,5m (Lasteinzug) gk = 8,00 kN/m

ç^\e} a^\|&@AOa, ā\`}*K

 $-\acute{O}^* \wedge @aæ \wedge \mathring{a}\acute{A} \mathring{A} \mathring{U} \wedge \mathring{c} \mathring{a} \mathring{a} \} \bullet : \ \ \wedge \mathring{A} F \widehat{E} \mathring{A} \triangleright F) \quad \mathring{A} \mathring{c} \mathring{A} = 2,50 \text{ kN/m}$

- Þ c |æ oÂÛ&@||ê { A HÊ €Á ÞÐ Á¢ÁÐÊ { qk = 2,50 kN/m

Ù&@^^|æ oÁæě•ÁÖæ&@Á ãååÁç^¦}æ&@ê•• ã dÈ

System

Òã, ~ | ådê* ^ ¦ Á; ã Á; ãÁ; ÁWÁ CÂEE(È

F30

Þæ&@ÄÜ>&\•]¦æ&@Á; ãdán\ÁUÚŠÁār dán\ÁÜč¦: Áæph ÁÜææ@àn({}•č¦: Á@¦: ˇ•ơ||n} ÈÁÒājnÁŒ•→@ˇ}*Áæph Á
Øn\cãt ơ āph č¦: Á¸ ã å Åāæàn ãÁØæç[¦ã ān\cÈÁN(ÁnājnÁn, ãn•n}ÁÚ¦[å`\çìn`dætäñê dánn ãáán}ÁØn\cãt ơ āph c>|: n}Á ˇ Á
n\{ 4*|æ&@}Án\-[|* dáan ÁÓn{ ^••ˇ}*Áæph ÁU¦càn({})•č¦: ÈÁÖàn ÁÓn{ ^••ˇ}*Áşn\• ơ @Á æ&@áæph Á
Tājån• œàph -[¦ån\`}*Áæph Áán}ÁØn\cãt ơ āph c`|: ÉÁ¸ n|&@|Áá*¦&@án) ÁOŒÞÁn, ê @pÁ¸ ãaÈ

Material

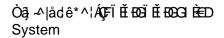
C25/30 B500A

BauStatik S340.de

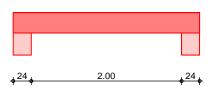
Genehmigungsstatik Ort:

Neubau/ Erweiterung der Oberschule Malschwitz Vorhaben:

Am Park 3


02694 Malschwitz, OT Baruth

Seite von 7


Nr./Pos.: 3A-R-EG-02

M 1:50

Ansicht

Abmessungen Mat./Querschnitt Fel d [m]2.24

Materi al C 25/30

b/h [cm]

Auflager

Lager	X	b
· ·	[m]	[cm]
A	0.00	24.0
В	2.24	24.0

Mauerw. Mauerw.

Art

 $K_{T,z}$ [kN/m] fest fest

Belastungen

Belastungen auf das System

Grafik

Belastungsgrafiken (einwirkungsbezogen)

Einwirkungen

Gk

Qk.N

	2.50	
	2.00	
hin		\triangle
1	2.24	1
•		——●

Streckenlasten

in z-Richtung

Einw. Gk

G	leici	niasten
F	7l d	K ∩mm

Feld	KOMM.	а	S	qı i	Q re
		[m]	[m]	[kN/m]	[kN/m]
1	Eigengew	0.00	2.24		1.20
1		0.00	2.24		10.00
1		0.00	2.24		8.00
1		0.00	2.24		3.75
1		0.00	2.24		8.00
1		0.00	2.24		3.75
1		0.00	2.24		2.50
1		0.00	2.24		2.50

Einw. Qk.N

*^{ êi ÁÖ Φ ÁÒ ÞÁFJJ GËFËÁ } å ÁÖ Φ ÁÒ ÞÁFJJ€ Kombinationen (* *EW)

2

•œ} åð £0[¦>à^¦* È

1.00*Gk 1

1.35*Gk

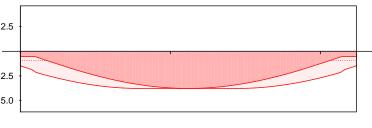
+1.50*Qk.N

Bemessung (GZT)

> \\ \(\hat{A}^\\ \) \(\hat{O}\) \\ \: \` • (\at{A}) \(\hat{A}\) \(\hat{A}\) \(\at{A}\) \(\hat{A}\) \(

mb BauStatik S340.de

		Genehmi	gungsstat	ik			
Diezmannstraße 5	Vorhab	en: Neuba	u/ Erweiterur	ng der Oberso	chule Malschwit	z	Seite von 7
D-04207 Leipzig T +49 341 41541-0 F +49 341 41541-11	Ort:	Am F	ark 3				
Ingenieur Consult GmbH E office@icl-ling.com		0269	4 Malschwit	tz,OT Barut	h	Nr./Po	s.: 3A-R-EG-02
Biegung	Ó^{ ^•• `}	* Δ>! Δή 30 * /	\à∧aà•1!ĭ	<i>ዬል</i> ነ *			
Abs. 6.1	X	Ek	M _{yd, o}	x/d _o	Z_0	A _{s, o}	As, o, erf
7.50. 0.1	F 3		Myd, u	x/d_u	Zu	$A_{s, u}$	A_s,u,erf
Feld 1	$\frac{[m]}{(L=2.24 \text{ m})}$	n)	[kŇm]		[cm]	[cm ²]	[cm ²]
i eiu i	0.00	1	_	_	_	_	0.80 _e
	0.00	1	_	0.003	24.0	_	1.77 _q
	0.12 _a	1	4.41	-			0.80 _e
	u	2	6.91	0.074	23.3	0.65	1.77 _q
	1.12*	1	21.77	-	-	-	- '
		2	34.09	0.344	20.6	3.78	3.78
	2.12a	1	4.41	-	-	-	0.80 _e
		2	6.91	0.074	23.3	0.65	1.77 _q
	2.24	1	-	-	-	-	$0.80_{\rm e}$
	A (1	1	-	0.003	24.0	-	1.77 _q
	a: Auflagerrar*: maximales	na Feldmoment					
			nach 9.2.1.2(1) nach Abs. 9.2.1				
Querkraft	Ó^{ ^••ˇ}	* Á⊳¦ÁÛ`^¦	\¦ææà^æ}•	1¦~&@}*			
Abs. 6.2	Χ	Ek	V_{Ed}		$V_{Rd,\;max}$	VRd, c	asw, erf
	[m]	1	[kN]	Oš Q	[kN]	[kN]	[cm ² /m]
Feld 1	(L = 2.24 m)	,	44.04	20.7	442.02		
	0.00	2	41.31 _R	20.7	113.03	-	1.05
	0.12 _a 0.36 _v	2 2	41.31 _R 41.31	20.7 20.7	113.03 113.03	26.69	1.95 1.95
	0.36 _√ 1.12	1		20. <i>1</i> 18.4	102.64	26.69	1.46 _M
	1.88 _v	2	- _R 41.31	20.7	113.03	26.69	1. 4 6 _M
	2.12 _a	2	41.31 _R	20.7	113.03	20.00	1.95
	2.24	2	41.31 _R	20.7	113.03	_	-
	a: Auflagerrar	nd		20			
	v: Abstand d	vom Auflagerra	and				
	M: Mindestbev		Abs. 9.2.2				
Bewehrungswahl							
<u>bewein ungswam</u>							
`} c^¦^ÆSê}*•à^¸^@`}*	Fel d	gew.	[cm ²	As a ²] [m]		lbd,l [m]	<pre>lbd,r Lage [m]</pre>
	1	; 6' (» %(6.1			0.13	0.13 1
	Ç\$ê}*^}Á§\ ÈÁx/	\¦æ}\^¦*• ê}	*^}Ê[(@}^ÁÛc4	i ^D			
[à^¦^Æsê}*•à^,^@°}*	Fel d	gew.	_ /	As a		I bd, <u>I</u>	Ibd, r Lage
<u>.</u>	1	; 6'' »%([cm ²	²] [m]		[m] 0.18	[m]
	I	, 0 //0	4.0	J∠ -U.U(2.30	0.10	0.18 1
	Ç,Šê}*^}Á§ \ ÈÁK/	\¦æ}\^¦*}*• ê}	*^}ÊÄ(@;^ÂÛc4	i ^D			


mb BauStatik S340.de

Nachweise (GZG)

æ æ æ æ æ a æ

Seite von 7

Nr./Pos.: 3A-R-EG-02

Fel d	Xa [m]	Xe [m]	ds [mm]	s [cm]	Schn.	asw [cm²/m]
1	0. 12 0. 57	0. 57 1. 67	», »	12. 5 17. 5	2 2	8. 04 5. 74
	1. 67	2. 12	» ,	12. 5	2	8. 04

175 mm ⁻ mm

R30

aerf a_{m} [mm] [mm] [mm] [mm] 0 0 0 0 15 -10 5 35

aR30 aerf [mm] [mm] [mm] [mm] -10

[mm] 1.12 5 35

im Grenzzustand der Gebrauchstauglichkeit nach DIN EN 1992-1-1:2011-

+0.30*Qk.N

Neubau/ Erweiterung der Oberschule Malschwitz Vorhaben:

Ort: Am Park 3

02694 Malschwitz, OT Baruth

Seite von 7

š

<u>[-]</u>

Nr./Pos.: 3A-R-EG-02

Begrenzungen der Verformungen im gerissenen Zustand (Zustand II)

Ö^¦Ápæ&@ ^ã Á đảÁ>¦Áåð Á *æ Æ œ} åð ^} ÁBemessungssituationen unter Langzeitbelastung å ¦&@ ^→@dÈ

Endkriechzahl Ò} å• &@ ¾ å{ æ

2.50 -0.50

zul. Endverformung

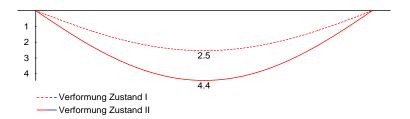
1/500

zul. Differenzverformung

1/500

Feld 1

Х	Ek	M_{Ed}	f _l ,¬		fu, ¬	f¬, zul
[m]		[kNm]	f _{l,O} [mm]	f _{II,0} [mm]	Γ ₁₁ [mm]	f _{zul} [mm]
L = 2.24	m)	LIXIVIII	[]	[]	[]	[]
` 1.12	1	22.71	2.54		4.43	4.48
			0.98	2.59	1.84	4.48


 $f_{1,0}/f_{11,0} =$ $f_{I,} \neg / f_{II,} \neg =$ $f_{||} =$

Verformungen ungerissen/gerissen zum Zeitpunkt t = 0 Verformungen ungerissen/gerissen zum Zeitpunkt t = ¬

Differenzverformungen f_{II.7} - f_{II.0}

M 1:25

Grenzlinien der Verformungen f [mm]

5 i ZU[Yf_f} ZhY

Einw. Gk

Einw. Qk.N

Char. Auflagerkr. charakteristische Auflagerkrêfte (je Einwirkung)

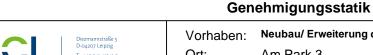
Aufl. Fz, k, mi n Fz, k, max [kN] [kN] A 38.87 38.87 В 38.87 38.87 Α 5.60 5.60 В 5.60 5.60

Zusammenfassung

Zusammenfassung der Nachweise

Nachweise (GZT) Nachweise im Grenzzustand der Tragfêhigkeit

[-1
OK
OK
OK


Nachweise (Brand)

Brandfall im Grenzzustand der Tragfêhigkeit

Λ	lac	hwe	l S
- 11	ac	IIVVC	ı

Brand OK

BauStatik S340.de

Neubau/ Erweiterung der Oberschule Malschwitz Vorhaben:

Ort: Am Park 3

02694 Malschwitz, OT Baruth

Seite von 7

Nr./Pos.: 3A-R-EG-02

Nachweise (GZG)

Nachweise im Grenzzust. der Gebrauchstauglichkeit

Nachwei s x [m] 0.99 Verformungsnachweis Feld 1 1.12 OK

ÒÕÁSI ÁPæĕ•ÁFÁ, &&@Á 4* | &&@ÉÁ

Öð! ÁP4@Áç[}ÁGÏÉ!&{Á\'*ãa ơÁ; 3&@Áe*~'`}åÁ\$\^¦ÁK\';-{;{`}*•*¦^}: ^Áç[}ÁSÐÓ €ÐÐÁU[||♂Ásð!•^Áe*&@Á '\^a`: ā\'cÁ, ^\a^} Áa>\-^} ÉÁ aa}} Áa^\ÁÛc`\: Á(ãaÁnā, ^\ÁP4@Ás[} ÁG &{ Ásĕ•*^àãa^cÁ, ^\a^} È åæ}}Á4}}^} Áeě&@ÁØV-Ùc>|:^Á*{ ÁÒã;•æcÁ[{{^}}È

Vorhaben: Neubau/ Erweiterung der Oberschule Malschwitz

Ort: Am Park 3

02694 Malschwitz, OT Baruth

Seite von 6

Nr./Pos.: 1B-R-OG-KS

?U_gUbXghY|bgh~fnY~|b~XYb~K~}bXYb~|a~C; a~]h Pos. 1B-R-OG-KS 6 fUbXgW(i mY]bgW() mi b[

OE *; } å Ás^; ÁQ}^}, æ) å• œê; \^Áç[} ÁCI&{ Æs oÁs æð ÁN{ •^c `} * Áç[} ÁS Ù-Ø]æ&@ o>; ^} Á,`; Ás[ÁÙe^ð; -{;{ ææÁ 1 ÖØÁ 4* 18&@È

Òã, ã\^}å^Ææ•o4*^{ êi ÆÖ^&\^}à^{ ^••`}*ÆÚ[•ÈÆFÓ´Ö-OG-01 auf

' Œ i ^} , ê} å^

 $F_{Z,Ed} = 36,83 \text{ kN/m}$

Q}^}, ê}å^kÁ

 $F_{Z,Ed} = 71,11 \text{ kN/m}$

Ùc': @4@}Áa: ÉÁ à^¦{ æĕ^¦*}*Áş[}Á\$ →}*}*^}Á*^{ êi ÁÛ&@;ãæ^}ÆŠÚ€!Á§ Á

OEi^}, ê}å^}KÁ

h = 47,00 cm

(72,00 cm inkl. Decke)

 $\mathbb{Q}^{\}$ ê \hat{a} K h = 77,00 cm

(102,00 cm inkl. Decke)

Öða ÁÐðai, ðal\`} * Áse Ásbað Áv ê} å ^Áspá ÁPæĕ] o•] æða} ¦ &&@e`} * Án! * ãa có A &&@és à ^¦ Án ðai ^} ÁG; - Lasteinzug >à^¦• &@ê* ã K

 $Y \hat{e} \hat{A}_A = 28,93 kN/mx 1,43

Õ^{ êi Ás^¦ÁÓ^{ ^••ˇ}*• ãs^¦•œê} å^Áş[}ÁSÙ-Ø|æ&@o>¦:^}Ájā,åÁşÁs^¦ÁŒi^}, æ}åÊÂÚo>¦:^Ásã;Áj Ás Á einer lichten Weite von 1,51 m als KS- Ø a&@ č : Á { • ^c àæ Á QÓ ^ ã A ¾ ^! Á DE - {æ ^! |ê} * ^ Á ç[} Á F Ï É Á & DÈ

Õ^{ êi Ás^¦ÁÓ^{ ^••`}*•, ãs^¦•œê} å^Áş[}ÁSÙ-Ø|æ&@o>¦:^}ÁnājåÁsjÁs^}ÁQ}^}, ê}å^} Á`^\Á`'AÁ`¦Á Pæĭ [o] æð } ¦ æð @č } * Áð ^ ¦ ÁÖ ^ &\ ^ ÉÁÚ > ¦ : ^ Áð ã Á. ` ÁN ã ^ ¦ Áð & @^ } ÁV ^ æð Ás [} ÁR ÉEFÁ Á Áste ÁSÚ - Flachsturz ઁ{ •^càæáAQÓ^aÁ∧ã,^¦ÁQE-|æ≛^¦|ê}*^Áq;}ÁFÏÉÉÁ&{ DÈ

Õ^{ êi Ás^¦ÁÓ^{ ^••`}*• ãs^!•œê} å^Áş[}ÁSÙ-Ø|æ&@o>!:^}Áã åÁš Ás^}ÁQ}^}, ê}å^} ÁŞ Á ^ã,^¦ÁOE +|æ*^¦|ê} * ^Áç[}ÁFÏÉÉÁ&(DÈ

OE•Áå^¦Á,æ&@;|*^}å^}Á/æà^||^Á*^@}Áåæì^||^Á*^@}ÁåæìÁÓ^{ ^••`}*•. ãå^¦•œ̂}å^Áå^¦ÁSÙ-Ø|æ&@;c;*^Á@¦ç;¦È

Aus der DIN 4102-I Ázaà 🛱 GÁ!* ã cÁ & 🏵 IÁSÙ- Flachsturze eine Feuerwiderstandsklasse von F90-A. Öælæĕ~Áa^: 21 @A 28.@Áaæ ÁOE•&@20 i ^} åÁæd *^@ed *^}^ÁÖ[\~{ ^} A>\ÁSÙ- Flachsturze.

Diezmannstraße 5 D-04207 Leipzig +49 341 41541-0 +49 341 41541-11 office@icl-ing.co

> 2,260 2,135 2,010

5,91

5,63

6,59

6,25

2,385

5,34

4,84

4,63

4,41

4,23 5,09

17,39

25,38

32,69

9,96

21,00

21,00

Neubau/ Erweiterung der Oberschule Malschwitz Vorhaben:

Ort: Am Park 3

0,760

1,010 0,885

16,48 19,58 24,00 30,78

45,51

40,98

53,66

77,52

53,66 60,37 68,99

77,52 86,66

53,66 60,37

58,68

60,37 68,99

86,66 98,25 113,41

68,99

14,20

36,93

33,81 51,59 68,68 100,09 17,5

48,29

70,05

48,29

70,13

48,29

70,13 77,52 86,66 98,25 113,41

0,635

11,5

17,5

11,5

11,5

17,5

11,5

17,5

11,5

17,5

113,41

98,25

68,99

Auflagertiefe t [cm]

0

1,635 1,760

9,49 10,49 11,71 13,24 15,22 17,84 21,49 26,86

8,66

8,32 9,08 9,99

1,510 1,385 1,260 1,135

> 11,09 12,46

1,885

7,97

7,37

6,99 7,67 02694 Malschwitz, OT Baruth

23,8

36,3

48,8

61,3

73,8

(Bemessungsgrößen)

Sturzhöhe h [cm]

Seite von 6

Nr./Pos.: 1B-R-OG-KS

KS-Flachstürze *)

Anlage 3

zur Typenstatik für KS-Flachstürze,

S*STURZ

Formate NF, NF17.5, 2DF, 3DF, 4DF, 150, 200, 214

Prus.-Nr.: 04/18 vom 2.05.2219

Mörtel Druckzone Bewehrung Auflagertiefe :

Steinformat Antragsteller :

Werbegemeinschaft KS-Sturz, Remsfeld 4 **DF** (Breite B = 24,0 cm)

(auch bei Plansteinmauerwerk)
Normalmörtel (mind. MG Ila) oder Dünnbettmörtel

Ubermauerung mit Vollsteinen nach DIN EN 771-2:2015-11 in Verb. mit DIN 20000-402:2017-01

2 Ø 10 - B500A oder B500B 11,5 bzw. 17,5 cm

ausschließlich mit vermörtelten Stoß- und Lagerfugen!!

Prüfamt für Baustatik 2.04.2019

Bemessungswert der Beanspruchungen ed = gd + qd [kN/m] James

Druckzone aus Mauerwerk

0

20,55 23,19 26,54 30,94 11,27 12,97 15,25 16,70 18,43 10,57 12,06 14,02 14,63 19,48 24,82 15,97 17,56 21,85 10,27 10,93 12,52 28,67 11,67 13,50 34,50 18,69 21,92 26,41 32,20 40,25 29,36 37,15 43,90 20,19 23,97 31,15 47,29 21,05 25,18 27,87 35,23 18,05 22,94 40,44 56,63 16,83 19,44 23,00 28,41 32,20 34,50 40,25 21,95 30,18 37,15 43,90 24,15 25,42 26,83 32,68 40,16 47,48 50,75 54,52 58,89 44,59 64,02 27,45 29,85 36,06 23,00 32,20 34,50 21,95 25,42 28,41 40,25 43,90 24,15 30,18 37,15 26,83 34,21 37,73 42,04 44,59 47,48 50,75 54,52 58,89 64,02 35,88 39,77

nach der "Allgemeinen bauaufsichtlichen Zulassung Nr. Z-17.1-978"

*

Prüfamt für Baustatik der Nächster Sichtvermerk durch das spätestens am**9.4.2024** erforderlich Landeshauptstadt Hannover ist

Diezmannstraße 5 D-04207 Leipzig +49 341 41541-0 +49 341 41541-11 office@icl-ing.co

2,385 2,260 2,010

3,89

3,71 4,10 5,09

3,53

9,41 10,37 12,81

8,99

16,77

23,00 24,15 25,42 26,83

23,00 24,15 35,88

34,21

29,07 32,13

2,94 3,22

> 3,08 3,37

8,57 7,84

> 8,21 9,89

> 15,98 17,54 19,34

15,31 18,44 22,65

21,95

24,13 26,43

21,95

32,69

21,00

14,62

2,135

4,80

4,56

4,31 5,39

11,50

10,94 12,15

21,43 23,88

20,39 25,18

25,42 26,83

37,73 39,77 42,04 44,59 1,760

6,92

6,50

18,43

17,32

31,15

32,20

47,48

1,635

7,94

7,42

20,55 23,19

19,48

35,23

34,50

50,75

50,75

1,885

6,08

5,73

16,21

15,28

29,36 32,20 34,50 40,25

27,87

30,18

44,59

30,18 32,20 47,48 34,50 37,15 40,25 43,90

14,36

13,58

26,41

28,41

39,91

28,41

35,70

1,510 1,385 1,260

9,21

8,57 9,99

21,85

37,15

40,44

37,15

54,52

54,52

10,81 12,87 17,84 21,49

26,54

24,82

47,29

40,25

58,89 64,02

58,89 64,02 70,13

Neubau/ Erweiterung der Oberschule Malschwitz Vorhaben:

Ort: Am Park 3

0,885

26,86

68,99

68,99

113,41

113,41

113,41

51,59

30,78

11,5

17,5

11,5

17,5

11,5

17,5

11,5

17,5

11,5

17,5

Auflagertiefe t [cm]

0

1,135 1,010 0,760 0,635

15,22

11,81 14,17 16,48 19,58 24,00

30,94 36,93 45,51 58,68

28,67

43,90

56,63

43,90 48,29

33,81

48,29 53,66 60,37

70,05 86,66

70,13 77,52

48,29

40,98 68,68 98,83

77,52 98,25

53,66 60,37 68,99

53,66 60,37 68,99

77,52

86,66 98,25

86,66

98,25

02694 Malschwitz, OT Baruth

23,8

36,3

48,8

61,3

73,8

Seite von 6

Nr./Pos.: 1B-R-OG-KS

zur Typenstatik für KS-Flachstürze,

Formate NF, NF17.5, 2DF, 3DF, 4DF, 150, 200, 214

Pruf.-Nr.: 04/18 vom 2.04.2019

Anlage 21

KS-Flachstürze *)

Auflagertiefe : Steinformat Antragsteller :

Werbegemeinschaft KS-Sturz, Remsfeld

Bewehrung

Ubermauerung mit Lochsteinen nach DIN EN 771-2:2015-11 in Verb. mit DIN 20000-402:2017-01 4 **DF** (Breite B = 24,0 cm) 11,5 bzw. 17,5 cm 2 Ø 10 - B500A oder B500B

ausschließlich <u>mit</u> vermörtelten Stoß- und Lagerfugen !!

0

Mörtel

(auch bei Plansteinmauerwerk)

Normalmörtel (mind. MG IIa) oder Dünnbettmörtel

9.04. 70.19

Druckzone aus Mauerwerk

Jand Prüfamt für Baustatik

Bemessungswert der Beanspruchungen ed = gd + qd [kN/m] (Bemessungsgrößen) Sturzhöhe h [cm]

nach der "Allgemeinen bauaufsichtlichen Zulassung Nr. Z-17.1-978"

*

Prüfamt für Baustatik der Nächster Sichtvermerk durch das Landeshauptstadt Hannover ist

spätestens am 9. 4. 2024 erforderlich

mb BauStatik S014

Vorhaben:

Neubau/ Erweiterung der Oberschule Malschwitz

Ort: Am Park 3

02694 Malschwitz, OT Baruth

Seite von 6

Nr./Pos.: 1B-R-OG-KS

Konradin

Sonderdruck aus

BAU BERATUNG ARCHITEKTUR

Kennzifferzeitschrift für Architekten, Planer, Bauingenieure

BRANDSCHUTZ

Diezmannstraße 5 D-04207 Leipzig T +49 341 41541-0 F +49 341 41541-11 E office@icl-ing.cor Vorhaben: Neubau/ Erweiterung der Oberschule Malschwitz

Ort: Am Park 3

02694 Malschwitz, OT Baruth

Seite von 6

Nr./Pos.: 1B-R-OG-KS

BRANDSCHUTZ TECHNIK

Überbrücken von Wandöffnungen

Knackpunkt Sturz

Die Landesbauordnungen regeln die Bedingungen, die bei Bauvorhaben zu beachten sind.

Eine exponierte Stellung nimmt dabei das Thema Brandschutz ein. Dabei steht das konkrete "Interesse der Abwendung von Gefahren für Leben und Gesundheit von Menschen und Tieren" als Leitziel im Mittelpunkt (zit. n. LBO Baden-Württemberg, § 15). Die Bauordnungen sehen Abweichungen von den gültigen technischen Vorschriften und Normen nur in sehr engen Grenzen vor, wobei dem Zweck der Gefahrenabwehr ausdrücklich und nachweislich entsprochen werden muss.

Im Rahmen des vorbeugenden Brandschutzes kommt neben technischen Vorkehrungen dem so genannten "baulichen Brandschutz" eine Schlüsselrolle zu.

Er hat die Aufgabe, möglichst hohe Standzeiten der tragenden Konstruktionsteile zu gewährleisten. Der zeitliche Korridor zur Fremdrettung kann situationsabhängig zwischen wenigen Minuten und mehreren Stunden betragen

Dabei gilt: Je besser der bauliche Brandschutz und damit die Feu-

Durch eine extrem hohe Feuerwiderstandsdauer erfüllen . . .

erwiderstandsdauer der tragenden Gebäudeteile, desto einfacher die Rettung. Nähere Informationen zum Thema Brandentwicklung enthält u.a. der "Leitfaden Ingenieurmethoden des Brandschutzes" der Vereinigung zur Förderung des Deutschen Brandschutzes e.V. vom Mai 2006.

Standfestigkeit eines neuralgischen Punktes

Vor diesem Hintergrund haben sich insbesondere KS-Stürze bewährt, weil sie einen hinsichtlich der Standfestigkeit von Bauten neuralgischen Punkt optimal absichern.

Durch eine extrem hohe Feuerwiderstandsdauer, die deutlich über der von Vergleichsbaustoffen liegt, erfüllen KS-Stürze die Anforderungen des Brandschutzes in vorbildlicher Weise; dies gilt für alle KS-Stürze gleichermaßen (Hintermauerstürze, System- und Fertigteilstürze und Sichtmauerstürze).

DIN 4102 als nationaler Maßstab

Die wesentlichen Normierungen in Bezug auf den Feuerwiderstand von Bauteilen finden sich in der nach wie vor national gültigen DIN 4102 "Brandverhalten von Baustoffen und Bauteilen". Sie fasst hinsichtlich des Brandschutzes die Baustoffforschungen der letzten 50 Jahre zusammen und berücksichtigt dabei alle praxisrelevanten Baustoffe und Bauarten.

Zur Beurteilung der Norm-Konformität von Stürzen sind die Aspekte Baustoffklassen, Feuerwiderstandsklassen sowie die Klassifizierung von Bauteilen zu berücksichtigen.

Die DIN 4102–1 unterscheidet grundsätzlich zwischen "nicht brennbaren" und "brennbaren" Baustoffen und leitet daraus Baustoffklassen ab.

Wanddicken, Sturzformate und Feuerwiderstandsklassen

() Klammerwerte gelten nur mit brandschutztechnisch wirksamer Putzbekleidung

		Stü	rze nach DIN 4102-4 Tab.	. 42	Stürze nach DIN 4102-4 Tab. 6
Wanddicke in mm	Format / b x h	KS-Sturz	Ziegelsturz	Porenbetonsturz	Betonsturz
115	NF 115 x 71	F 60-A (F 90-A)	(F 30-A) bis (F90-A)	==	F 30-A *
	2 DF 115 x 113	F 90-A	F60-A (F 90-A)	(F 30-A) ** (F60-A)	F 30-A *
175	NF 175 x 71	F 90-A (F 120-A)	(F 30-A) bis (F90-A)	2	F 90-A *
	3 DF 175 x 113	F 90-A (F 120-A)	F 90-A	F 60-A ** (F90-A)	F 90-A *
240	4 DF 240 x 113	F 120-A	F 90-A	F 90-A **	F 120-A *

**) Flach- unit Kombistiizie gem. Anderung Diffs 4102-4241-2004.

Viewer Version 2022 - Copyright 2021 - mb AEC Software Gr

b BauStatik S014

Genehmigungsstatik

Diezmannstraße 5 D-04207 Leipzig T +49 341 41541-0 F +49 341 41541-11 E office@icl-ing.cc Vorhaben: Neubau/ Erweiterung der Oberschule Malschwitz

Ort: Am Park 3

02694 Malschwitz, OT Baruth

Seite von 6

Nr./Pos.: 1B-R-OG-KS

TECHNIK BRANDSCHUTZ

Dabei erreichen KS-Stürze innerhalb der Baustoffklasse A (nicht brennbar) die qualitativ höchste Einstufung (A1).

Weiterhin wird im Teil 4 der DIN 4102 zwischen tragenden und nichttragenden, raumabschließenden und nichtraumabschließenden Wänden und Pfeilern sowie Flachstürzen und ausbetonierten U-Schalen unterschieden.

Stürze über Wandöffnungen sind für eine dreiseitige Brandbeanspruchung zu bemessen. Im Brandfall muss die Tragfähigkeit über eine bestimmte Zeit sichergestellt sein. Dementsprechend erfolgt die Einteilung in Feuerwiderstandsklassen.

Im Bezug auf die Feuerwiderstandsklasse erzielen KS-Stürze Spitzenwerte. Die Feuerwiderstandsklasse gibt die Feuerwiderstandsdauer (F) in Minuten an. Der Definition liegen Brandversuche mit der so genannten "Einheits-Temperaturzeitkurve" unter realistischen Einbaubedingungen (Stürze mit Belastung) zugrunde.

Sie veranschaulicht die enormen Belastungen, die im Brandfall in einem Gebäude entstehen. So wird im Brandraum bereits nach 15 Minuten eine Temperatur von 719 Grad Celsius erreicht, die weiterhin kontinuierlich ansteigt und nach 90 Minuten bei rund 1000 Grad liegt. Ermittelt wurden diese Temperaturverläufe bei Echt-Brandversuchen, es handelt sich also nicht um abstrakte Laborwerte.

Die daraus abgeleitete und im Hochbau übliche Feuerwiderstandsklasse F-90-A (Feuerwiderstandsdauer mind. 90 Minuten) erfüllt ein KS-Flachsturz bereits im Format 2 DF (115 x 113 mm) – ohne Putzbekleidung. Das Auftragen eines leichten Spachteloder Dünnputzes ist hier problemlos möglich.

Sicherheitsvorteile

In der Praxis ist beim Einsatz von Betonstürzen darauf zu achten, dass sie aus brandschutztechnischer Sicht mit einer ausreichenden Betonüberdeckung

... KS-Stürze die Anforderungen des Brandschutzes in vorbildlicher Weise.

Die guten Brandschutzeigenschaften liegen darin begründet, dass der Betonkern und die Bewehrung an drei Seiten von KS-Schalen geschützt werden.

ausgestattet sind. Dies ist in der DIN 4102–4 sicherheitstechnisch zwingend vorgeschrieben. Der Achsabstand der Armierungseisen zum Betonsturzrand muss bei einer Breite von ≤ 150 mm zum Erreichen der Feuerwiderstandsklasse von F 90 unten (u) 55 mm bzw. unten seitlich (u_s) 65 mm, betragen (DIN 4102–4 Tab. 6). Die Nichtbeachtung dieser Vorschriften kann zu erheblichen Sicherheitsmängeln führen.

Ein 11,5 cm breiter Betonsturz in einer 11,5 cm dicken Kalksandsteinwand (mit Dünn- oder Spachtelputz) führt aus brandschutztechnischer Sicht zur einer Abminderung der Feuerwiderstandsklasse von F 90 auf F 30. Ein Umstand, der versicherungstechnisch wie haftungsrechtlich problematisch ist und vor dem daher dringend gewarnt sei.

Innerhalb gewisser Grenzen können Betonstürze mit einer entsprechenden Putzschicht brandschutztechnisch ertüchtigt werden.

Ein weiterer wichtiger Aspekt: Bislang durften nach DIN 1045: 1988–07 Abs.17.5.5 (5) in Verbindung mit der DIN 1053–1: 1996–11 Abs.8.5.3 Stürze bis zu einer Länge ≤ 2,0 m auch unverbügelt hergestellt werden. Nach der DIN 1045–1, 10.3.1 können diese Regelungen nicht mehr angewendet werden (Normenausschuss Bauwesen (NABau) – Stand 22.07.2005.

Die DIN 1045–1 (Juli 2001) verlangt, dass Betonstürze grundsätzlich eine Bügelbewehrung

aufweisen müssen. Dies gilt auch bei kurzen Stützweiten bzw. Sturzlängen.

Auch gegenüber Ziegelstürzen sind KS-Stürze im Vorteil: Ziegelstürze werden häufig mit einer Sturzhöhe von 71 mm eingebaut. Dabei gilt für die Feuerwiderstandsklassen F-30 bis F-90: Hier ist zusätzlich eine brandschutztechnisch wirksame Putzbekleidung erforderlich. Wichtiger Hinweis: Ein Wärmedämmverbundsystem mit Polystyrol-Platten gilt nicht als Putzbekleidung im Sinne der DIN 4102. Zudem kann die Feuerwiderstandsklasse F 120 mit Ziegelflachstürzen nicht erreicht werden.

Die guten Brandschutzeigenschaften von KS-Stürzen liegen darin begründet, dass der Betonkern in C 20/25 (B 25) und Bewehrung (BSt. 500S) an drei Seiten von KS-Schalen geschützt werden.

Teilweise sind KS-Stürze auch an den Stirnseiten mit entsprechenden U-Schalen geschlossen. Die Betonüberdeckung beträgt aus Gründen des Korrosionsschutzes allseitig 20 mm.

Zusammenfassung

KS-Stürze besitzen hervorragende Brandschutzeigenschaften, die von keinem Wettbewerbsprodukt bei gleicher Sturzbreite übertroffen werden. Sie erreichen, anders als alle vergleichbaren Baustoffe, bereits bei einer Breite von 115 mm und einer Mindesthöhe von 113 mm die Feuerwiderstandsklasse F-90 und können ohne weiteren Nachweis eingebaut werden.

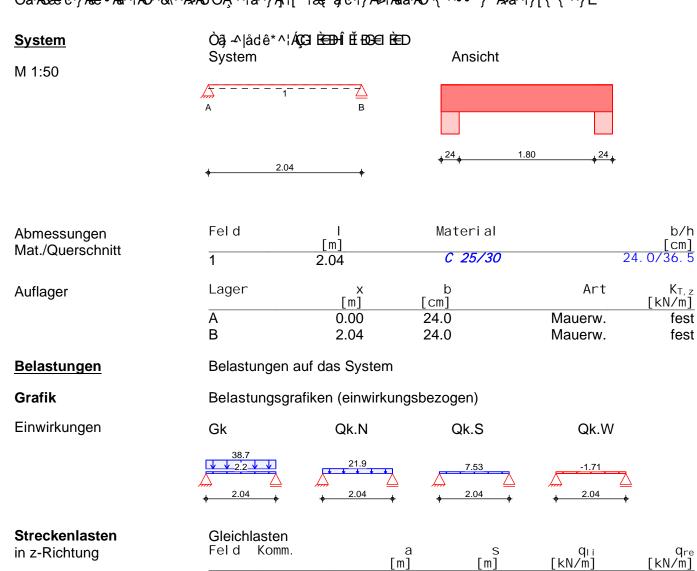
KS-FTS-Fertigteilstürze erfüllen ebenfalls diese Brandschutzanforderungen und zwar bei einer Breite von 115 mm und einer Mindesthöhe von 196 bzw. 248 mm. Die bauaufsichtlichen Zulassungen der Sturzhersteller sind zu beachten.

Jörg Knobloch

Vorhaben: Neubau/ Erweiterung der Oberschule Malschwitz Ort: Am Park 3

02694 Malschwitz, OT Baruth

Seite von 5


Nr./Pos.: 1B-R-OG-01

H' fghi fn'a]h''k '1'%, \$a ']b'XYf'A]hYk UbX'C; Pos. 1B-R-OG-01

Òã ^ÁCE • > @`} * ÁB^¦Á/>¦ • C>|: ^ÁB ÁB^¦ÁT ã C^|, 20} å ÁB OÁO+ ÁS Ù- Ø|208&@ č |: Á 3& @Á 4* | 3& @ÁC) 28 @ ÁÚ[• ã BB } Á 1B-R-OG-SÙDÀÖæ@¦Á, ^¦å^}Ásã•^Áæ•AÛæ@à^d;}dê*^¦Áæ*•*^>@dŽÖæÁæ∮^ÁÛc>¦: ^ÁsãAÁ¦^&&@ÁSæ•oÁ aus der Auflagerkraft B der Decke 1B-D-OG-EFÁsaàdæt^} Á >••^} ÉÁ ãåÁ \ /ÁÓ^{ ^••`} * Áå^\ÁÚc' : Á ãÁ å^¦Át¦4i c^}ÁÚ]æ}}, ^ãc^ÁÇÈÓÈÁO&@^ÁpÌÐÁÞŠÁsãÁÞFTDÁs[}ÁÁMÁFÊ€Á; Áæ}*^•^c dÈÁ OE • ÁÕ¦>} å^} Á\$^¦ÁÒã @ ãdã&@ ^ãÁ, ^¦å^} Ásd!^Ásd å^¦^} ÁÚc>|: ^ÁQS>|: ^¦DÁSA^} cã &@ÁS ÁS@^¦ÁP4@ ÉÁÓ!^ã^Á `}åÁÓ^.^@`}*Áæĕ•*^>@dÈ

Belastung

Öæ ÁÒã^}*^, &&@Á, ãåÁ¦[*¦æ; ã;c^¦}Áà^¦>&\•&&@ã;cÈ Öð! ÁŠær & } Ásĕ • Ás\ ÁÖ^&\ ^ÁsÁUÕÁ, ^¦å^} Á\;[*¦æf ð; &\;Ás¦Ásð!Ásð!ÁÓ^{ ^••`}*Ásà^¦}[{ { ^}È

[m]

0.00

0.00

0.00

0.00

0.00

2.04

2.04

2.04

2.04

2.04

2.19

38.75

21.85

7.53

-1.71

Einw. Gk

Einw. Qk.N

Einw. Qk.S

Einw. Qk.W

1

(a) 1

(a) 1

(a) 1

(a) 1

Eigengew

Decke OG

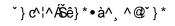
Decke OG

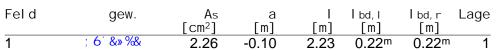
Decke OG

Decke OG

Neubau/ Erweiterung der Oberschule Malschwitz

Am Park 3

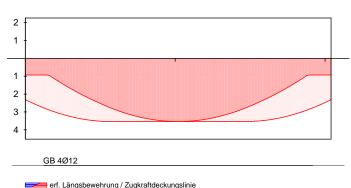

02694 Malschwitz, OT Baruth


Seite von 5

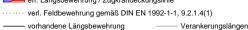
Nr./Pos.: 1B-R-OG-01

aus Pos. '1B-D-OG-01', Lager 'B' (a)

Bewehrungswahl



Lêngsbewehrung M 1:25



GB 2Ø12



š

Nachweise (GZG)

im Grenzzustand der Gebrauchstauglichkeit nach DIN EN 1992-1-1:2011-01

Verformungen

Abs. 7.4

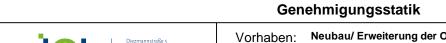
Begrenzungen der Verformungen im gerissenen Zustand (Zustand II)

Ö^¦ÁÞæ&@ ^ã Á¸ ãåÁ⊳¦Áåã Á` æ ã œ} åã ^} ÁBemessungssituationen unter Langzeitbelastung å ¦&@ ^ → @dÈ

Endkriechzahl O) å• &@ ā å{ æ

2.50 -0.50

zul. Endverformung


1/500

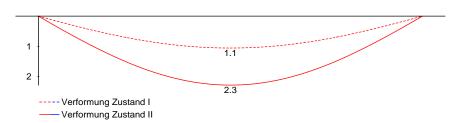
zul. Differenzverformung

1/250

Grenzlinien der Verformungen f [mm]

BauStatik S340.de

Neubau/ Erweiterung der Oberschule Malschwitz


Ort: Am Park 3

02694 Malschwitz, OT Baruth

Seite von 5

Nr./Pos.: 1B-R-OG-01

M 1:20

5 i ZU[Yf_f} ZhY

Char. Auflagerkr.	charakteristische Auflagerkrêfte (je Einwirkung)				
-	Aufl.	Fz, k, mi n [kN]	Fz, k, max [kN]		
Einw. <i>Gk</i>	A	41.76	41.76		
	В	41.76	41.76		
Einw. Qk.N	A	22.29	22.29		
	В	22.29	22.29		
Einw. Qk.S	A	7.68	7.68		
	В	7.68	7.68		
Einw. Qk.W	A	-1.74	-1.74		
	В	-1.74	-1.74		

Bemessungsauflagerkrêfte (Min/Max)

, ,	Aufl.	`	Fz, d, max [KN]
Grundkombinationen	A	39.15	95.56
	В	39.15	95.56

Zusammenfassung Zusammenfassung der Nachweise

Nachweise (GZT) Nachweise im Grenzzustand der Tragfêhigkeit

]

Nachweise (GZG) Nachweise im Grenzzust. der Gebrauchstauglichkeit

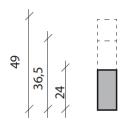
Nachwei s	0rt	x [m]		[-]
Verformungsnachweis	Feld 1	1.02	OK	0.56

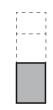
 $\ddot{O}^{\dot{A}\dot{U}} (\overrightarrow{a} = \dot{A} - \dot{A} - \dot{A} + \dot{A}$ åæ!>à^!|a*^} å^ÁÓ^!^a&@á\^!ÁTY - Wand wird ausgemauert.

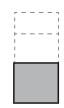
empfohlen.

Als Beispiel wird ein Fertigbetonsturz der Firma "Dennert Typ RS- Sturz" genannt und die Ó^|æc`}*•*¦^}:^Áæĕ~*^>@dK

Neubau/ Erweiterung der Oberschule Malschwitz Vorhaben: Ort:


Am Park 3


02694 Malschwitz, OT Baruth


Seite von 5

Nr./Pos.: 1B-R-OG-01

Belastungstabelle RS-Stürze für Innenwände

Breite in cm	l	11,5		I	17,5		l	24	
Höhe in cm	24	36,5	49	24	36,5	49	24	36,5	49
Auflager in cm	24	24	24	24	24	24	24	24	24
lichte Weite in cm	· 1						•	ш	
1,01	42,08	71,80	101,01	93,30	162,20	232,63	124,52	216,18	309,89
1,135	34,61	59,09	83,15	76,86	133,67	191,75	102,57	178,15	255,42
1,26	28,94	49,43	69,56	64,36	111,98	160,66	85,88	149,22	213,99
1,385	24,52	41,91	58,99	54,63	95,09	136,47	72,89	126,71	181,74
1,51	21,01	35,94	50,60	46,91	81,70	117,27	62,58	108,85	156,16
1,635	36,62	65,03	94,13	65,93	127,32	185,98	75,03	166,73	235,42
1,76	32,07	56,98	82,50	59,77	111,64	163,11	67,98	149,44	210,50
1,885	28,30	50,31	72,86	54,64	98,65	144,15	62,12	132,04	190,49
2,01	25,14	44,73	64,78	49,47	87,76	128,27	57,16	117,46	171,60
2,135	22,47	40,00	57,95	44,25	78,54	114,82	52,92	105,12	153,60
2,26	20,19	35,96	52,11	39,80	70,68	103,34	49,25	94,58	138,24
2,385	18,22	32,48	47,09	35,97	63,90	93,47	46,03	85,51	125,02

5. Gewichtstabelle RS-Stürze aus Beton

C 25 / 30

Beachten Sie bitte bei der Auswahl des Baustellenkrans folgende Gewichtsangaben

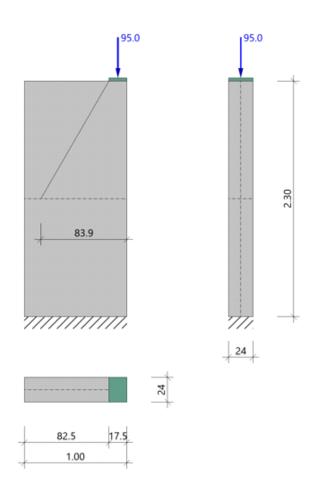
Innenwandbereich:

Breite cm	Höhe cm	Gewicht kg/lfdm.
	24	69
11,5	36,5	105
	49	141
	24	105
17,5	36,5	160
	49	214
	24	144
24	36,5	219
	49	294

Diezmannstraße 5 D-04207 Leipzig T +49 341 41541-0 F +49 341 41541-11 E office@icl-ing.com Vorhaben: Neubau/ Erweiterung der Oberschule Malschwitz

Ort: Am Park 3

02694 Malschwitz, OT Baruth


Seite von 5

Nr./Pos.: 1B-R-OG-01

 $\ddot{\Delta} = \ddot{\Delta} + \dot{\Delta} + \dot{\Delta} = \ddot{\Delta} + \dot{\Delta} = \ddot{\Delta} + \dot{\Delta} + \dot{\Delta} + \dot{\Delta} + \dot{\Delta} + \dot{\Delta} = \ddot{\Delta} + \dot{\Delta} +$

TB-Auflagerpressung TB-MAP 02/2021 (FRILO R-2021-2/P09)

Grafik

Grundparameter

MW-Norm: DIN EN 1996-1-1/NA:2012-05
Bemessungssituation = ständig/vorübergehend
Art der Bemessung = genau

Material KSP-12-1,0-DM

GammaM = 1.76

Druckfestigkeit $f_k = 7.00 \text{ N/mm}^2 \qquad f_d = 3.97 \text{ N/mm}^2$

System

Wandlänge I = 1.00 m Wandhöhe h = 2.30 m Wanddicke t = 24.0 cm Lastausmitte e = 0.0 cm Auflagerlänge I1 = 17.5 cm Auflagerliefe d1 = 24.0 cm Randabstand a1 = 0.0 cm Auflagerlast N_{Ed} = 95.0 kN

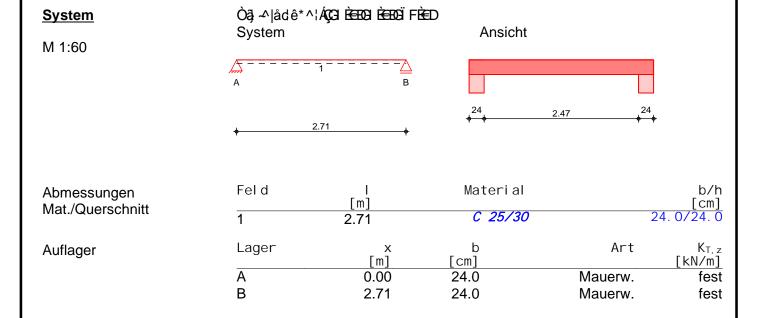
Ergebnisse

Erhöhungsfaktor $\beta = 1.00$

Diezmannstraße 5 D-04207 Leipzig T +49 341 41541-0 F +49 341 41541-11 E office@icl-ing.com Vorhaben: Neubau/ Erweiterung der Oberschule Malschwitz

Ort: Am Park 3

02694 Malschwitz, OT Baruth


Seite von 5

Nr./Pos.: 1B-R-OG-02

Pos. 1B-R-OG-02 Gl6 "6 U_Yb" VYf": Ybgl\(\frac{1}{2}\) bi b['< Ui g' 'i bX'(

<u>Belastungen</u>

- Òã^}*^, &&@Á, ãååÁÚ¦[*¦æ{ {ã, c^¦}Ás^¦>&\• &&@ã c
- Belastungen nachfolgend siehe Einwirkungen entsprechend 2. Lastannahmen
 - Aus der Decke 1B-D-OG-01 Auflager A
 - OE Ásh^¦ÁÚcæ@pà^q[}ææða æÁsĕ ÁÚcÓÞÁ(ãsÁnð; ^¦ÁP4@Áş[}Án€Ás{ Á;}åÁnð; ^¦ÁÓ¦^ãs^Áş[}ÁGIÁs{

Neubau/ Erweiterung der Oberschule Malschwitz Vorhaben:

Ort: Am Park 3

02694 Malschwitz, OT Baruth

Seite von 5

Nr./Pos.: 1B-R-OG-02

Belastungen

Belastungen auf das System

Grafik

Belastungsgrafiken (einwirkungsbezogen)

Einv	virku	ngen
	viiika	119011

	21.3 -	-
V	<u>↓</u> 1.4 ↓	V
\bigwedge		\triangle
•	2.71	

Gk

Qk.N

4.13	
	\triangle
2 71	

Qk.S

Qk.W

Streckenlasten

in z-Richtung

Einw. Gk

Einw.	Qk.N	
Einw.	Qk.S	
Einw.	Qk.W	

Gleichlasten

	Fel d	Komm.	a	S	qı i	Q re
			[m]	[m]	[kN/m]	[kN/m]
	1	Eigengew	0.00	2.71		1.44
(a)	1		0.00	2.71		21.25
	1	Attika	0.00	2.71		3.60
(a)	1		0.00	2.71		7.25
(a)	1		0.00	2.71		4.13
(a)	1		0.00	2.71		-0.94

(a)

aus Pos. '1B-D-OG-01', Lager 'A'

Kombinationen

•œ} åð Ð;[¦>à^¦*È

* ^{	êi ÁÖ OÞÁFJJŒË	ËFÁ}åÁÖOÞÁÖÞÁFJJ€
Ek`	(* *EW)	•
1	1.00*Gk	
2	1 35*Gk	+1 50*Ok N

+1.50*Qk.N 3 +1.50*Qk.W 1.00*Gk

(* *EW) Ek

4	0.90 GK
5	1.10*Gk

+1.50*Qk.W +1.50*Qk.N

+0.75*Qk.S

+0.75*Qk.S

st./vor. Auflagerkr.

Lagesicherheit

1.35*Gk

+1.50*Qk.W +1.50*Qk.N

[m]

+0.75*Qk.S

Bewehrungswahl

Fel d	
1	

gew. ; 6'(» &\$

As $[cm^2]$ 12.57 -0.05

l bd, I [m] [m] 2.81 0.17 l bd, r Lage [m]0.17

1

ÇŠê}*^}Á§,\|ÈÁK^¦æ),\^¦`}*•|ê}*^}ÉÃ,@}^ÁÛc4i^D

Fel d	gew.
1	; 6° &» &\$

[m] $[cm^2]$ 6.28 -0.13

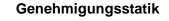
l bd, I [m] [m] 0.25^{h} 2.98

lbd, r Lage [m] 0.25^{h}

ÇŠê}*^}Æj\|ÉX^¦æj\^¦*}*•|ê}*^}Æj@^ÂÛdi^D h: gesonderte Verankerungsform erforderlich

Biegung

Querkraft


Bewehrungswahl Lagesicherheit [-]

OK OK

OK

OK

Vorhaben: Neubau/ Erweiterung der Oberschule Malschwitz

Ort: Am Park 3

02694 Malschwitz,OT Baruth

Seite von 5

[-]

Nr./Pos.: 1B-R-OG-02

Nachweise (Brand) Brandfall im Grenzzustand der Tragfêhigkeit

Nachwei s

Brand OK

Nachweise (GZG) Nachweise im Grenzzust. der Gebrauchstauglichkeit

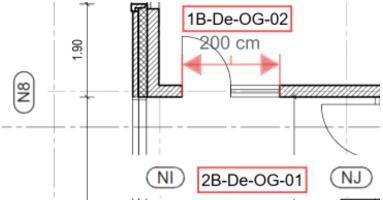
Der Fenstersturz kann auch als Fertigteilsturz mit der entsprechenden Bewehrung und den

Anforderungen an die Gebraucht Tauglichkeit realisiert werden.

Vorhaben: Neubau/ Erweiterung der Oberschule Malschwitz Ort:

Am Park 3

02694 Malschwitz, OT Baruth


Seite von 7

Nr./Pos.: 1B-R-OG-03

GHUA 'VYhcb! | bhYfni [" VYf'H" f" ZZbi b["]b'XYf'5 W gY'B7 Pos. 1B-R-OG-03

Öð • ^ | ÁÛ cæ@à ^ ({ } à ad\ ^ } Ás ð a^ o ^ s ^ } ÁÚ c | : Ás à ^ | Ás ^ | Áv > | 4 - } * } * Ás Ás ^ | ÁOB&@ ^ ÁP Ì Á , ã &@ } ÁP @ÁP RÁ } å Ás Á NB zwischen N4/ N5 ab.

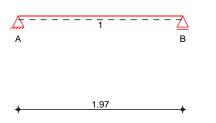
Öð • ^Á/>|4--}`} * Á\;+ê@ Ó Ó /|æ č} * ^} Áeč • Ás ^! ÁÖ ^&\ ^Á-à ^; Ás ^{ ÁO ^ ^! ÁU Õ Ás ^! ÁÖ ^&\ ^Á-à ^! Ás ^} Á Ù&@ |-|>*^|} ÁPæĕ•ÁHÁà: ÈÁPæĕ•ÁIÁ} åÁå^¦ÁOTæðiæÆÖðiAÓ^|æeč}*^} Ár!*^à^} Ár 3&@Áæĕ•Áå^} ÁÚ[•ãði} }^ 1B-D-OG-02, 2B-D-OG-01 und Attika (mit 5 kN/m).

Öð Áð @ Á ^ã Á ^ Á ^ ã Á Á ^ Á Ó Ã ~ | å dê* ^ ! • Á A dê* o Æ Ē H È

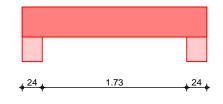
Die Belastung aus der Position 1B-D-OG-€CÁ, ãåÁ,¦[*¦æ{ { ã, c^¦}Áåã^\oÁ>à^¦}[{ { ^}È Die Belastung aus der Pos. 2B-D-OG-01 ergibt sich zu:

 $g_k = 37,24 \text{ kN/m}$

 $q_k = 10,33 \text{ kN/m}$


 $s_k = 5,68 \text{ kN/m}$

Œ Á\$\^¦Á 8&@¦^} ÂÛ^8¢Á, ã å Á\$ 8\•^\¦ÁÛč¦: Á\$ĕ &@Á>¦Á\$\^} ÁV>¦•č¦: Á\$¡Á\$\^¦ÁOB&@^ÁÞÓÐÁÞI-N5 angewandt.


System	

M 1:45

Ò a ~ | åd ê * ^ ¦ Á C G È E D Î È E D Ï È E D System

Ansicht

Abmessungen
Mat./Querschnitt

Auflager

Fel d	1	Materi al
	[m]	
1	1.97	C 25/30

5/30

b/h [cm] 24. 0/36. 5

Lager $\overline{\mathsf{A}}$

В

[m] 0.00 1.97

[cm] 24.0

24.0

Art Mauerw. Mauerw.

 $K_{T,z}$ [kN/m]fest fest

mb BauStatik S340.de

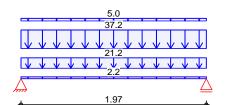
Vorhaben: Neubau/ Erweiterung der Oberschule Malschwitz

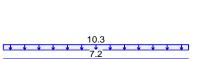
Ort: Am Park 3

02694 Malschwitz, OT Baruth

Seite von 7

Nr./Pos.: 1B-R-OG-03

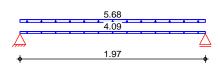

Belastungen

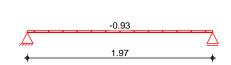

Belastungen auf das System

Grafik

Belastungsgrafiken (einwirkungsbezogen)

Einwirkungen




Qk.N

Qk.W

Qk.S

Gk

Streckenlasten

in z-Richtung

Einw. Gk

Einw. Qk.N

Einw. Qk.S

Einw. Qk.W

F	el d	Komm.	а	S	qı i	q re
			[m]	[m]	[kN/m]	[kN/m]
	1	Eigengew	0.00	1.97		2.19
(a)	1		0.00	1.97		21.19
	1	2B-D-OG	0.00	1.97		37.24
	1	Attika	0.00	1.97		5.00
(a)	1		0.00	1.97		7.18
	1	2B-D-OG	0.00	1.97		10.33
(a)	1		0.00	1.97		4.09
	1	2B-D-OG	0.00	1.97		5.68
(a)	1		0.00	1.97		-0.93

(a)

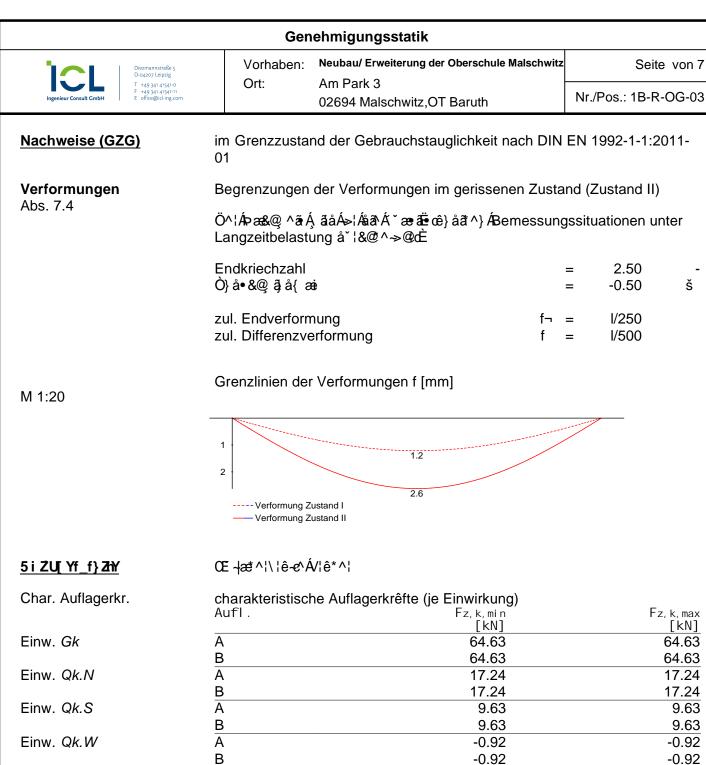
aus Pos. '1B-D-OG-02', Lager 'B'

Bewehrungswahl

Fel d	gew.	As [cm²]	a [m]	 [m]	bd, [m]	lbd,r [m]	Lage
1	; 6 ' » %*	6.03	-0.14	2.25	0.26 ^h	0.26 ^h	1

ÇŠê}*^}Á§,\|ÈÁK^¦æ),\^¦`}*•|ê}*^}ÊÁ(@),^ÁÛc4i^D

Fel d	gew.	As [cm ²]	a [m]	 [m]	lbd,l [m]	lbd,r [m]	Lage
1	; 6' &» %*	4.02	-0.17	2.31	0.29 ^{mh}	0.29 ^{mh}	1


ÇŠê}*^}Á§\|ÈÁK^¦æ}\^¦`}*•|ê}*^}ÊÁ(@}^ÁÛc4i^D

mb BauStatik S340.de

1.85

33

46

Seite von 7

š

Fz, k, max

[kN]

64.63

64.63

17.24

17.24

9.63

9.63

-0.92

-0.92

Fz, d, max [kN] 120.34 120.34

[-]

0rt

OK OK

OK

OK

Ó^{ EÉæĕ - æŧ^¦\¦ê-«^

Grundkombinationen Zusammenfassung Jachweise (GZT)	Demessungsauhagerkierte (Min/Max)						
	Aufl.	Fz, d, mi n					
		[kN]					
Grundkombinationen	A	63.26					
	В	63.26					
7	7						
<u>Zusammenrassung</u>	Zusammenfassung der Nachweise						
Nachweise (GZT)	Nachweise im Grenzzustand der Ti	ragfêhigkeit					
	Tracini dice iiii Grenzzaciana der Ti	agionighten					
	Nachwei s						
	Biegung						
	Querkraft						
	Quontian						

Bewehrungswahl

Lagesicherheit

Bemessungsauflagerkrêfte (Min/Max)

Diezmannstraße 5 D-04207 Leipzig T +49 341 41541-0 F +49 341 41541-11 E office@icl-ing.com Vorhaben: Neubau/ Erweiterung der Oberschule Malschwitz

Ort: Am Park 3

02694 Malschwitz, OT Baruth

Seite von 7

[-]

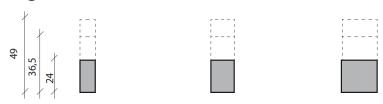
Nr./Pos.: 1B-R-OG-03

Nachweise (Brand) Brandfall im Grenzzustand der Tragfêhigkeit

Nachwei s

Brand OK

Nachweise (GZG) Nachweise im Grenzzust. der Gebrauchstauglichkeit


Nachweis Ort x [m] [-] Verformungsnachweis Feld 1 0.99 OK 0.35

Ö^¦ÁÛcæ@à^{{}•c'|: Á¸ãåÁ}{ãæ^|àæÁà^¦Áå^¦Á\$~}`}*Á¸Áå^¦ÁQ}^}, æ¸åÁø*^à¦æ&@ÁÖ^¦Á åæb>à^¦[ð**^}å^ÁÓ^¦^&&@Á^¦ÁTY - Wand wird ausgemauert.

 $\grave{O}_{A}^{\dagger} \wedge \hat{A} = \hat{A}_{A}^{\dagger} \wedge \hat{A} = \hat{A}_{A}^{\dagger} + \hat{A}_{A}^{\dagger} + \hat{A} = \hat{A}_{A}^{\dagger} + \hat{A}_{A}^{\dagger$

Als Beispiel wird ein Fertigbetonsturz der Firma "Dennert Typ RS- Sturz" genannt und die Ó^|æ c } * • * ¦^} : ^Áæ * ^ > @dK

Belastungstabelle RS-Stürze für Innenwände

Breite in cm		11,5		I	17,5		I	24	
Höhe in cm	24	36,5	49	24	36,5	49	24	36,5	49
Auflager in cm	24	24	24	24	24	24	24	24	24
lichte Weite in cm	1								
1,01	42,08	71,80	101,01	93,30	162,20	232,63	124,52	216,18	309,89
1,135	34,61	59,09	83,15	76,86	133,67	191,75	102,57	178,15	255,42
1,26	28,94	49,43	69,56	64,36	111,98	160,66	85,88	149,22	213,99
1,385	24,52	41,91	58,99	54,63	95,09	136,47	72,89	126,71	181,74
1,51	21,01	35,94	50,60	46,91	81,70	117,27	62,58	108,85	156,16
1,635	36,62	65,03	94,13	65,93	127,32	185,98	75,03	166,73	235,42
1,76	32,07	56,98	82,50	59,77	111,64	163,11	67,98	149,44	210,50
1,885	28,30	50,31	72,86	54,64	98,65	144,15	62,12	132,04	190,49
2,01	25,14	44,73	64,78	49,47	87,76	128,27	57,16	117,46	171,60
2,135	22,47	40,00	57,95	44,25	78,54	114,82	52,92	105,12	153,60
2,26	20,19	35,96	52,11	39,80	70,68	103,34	49,25	94,58	138,24
2,385	18,22	32,48	47,09	35,97	63,90	93,47	46,03	85,51	125,02

Diezmannstraße 5 D-04207 Leipzig T +49 341 41541-0 F +49 341 41541-11 E office@icl-ing.com Vorhaben: Neubau/ Erweiterung der Oberschule Malschwitz

Ort: Am Park 3

02694 Malschwitz,OT Baruth

Seite von 7

Nr./Pos.: 1B-R-OG-03

5. Gewichtstabelle RS-Stürze aus Beton

C 25 / 30

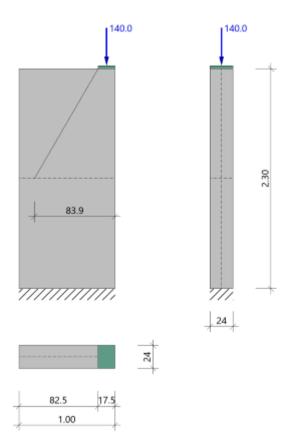
Beachten Sie bitte bei der Auswahl des Baustellenkrans folgende Gewichtsangaben

Innenwandbereich:

Breite cm	Höhe cm	Gewicht kg/lfdm.				
	24	69				
11,5	36,5	105				
	49	141				
	24	105				
17,5	36,5	160				
	49	214				
	24	144				
24	36,5	219				
	49	294				

Diezmannstraße 5 D-04207 Leipzig T +49 341 41541-0 F +49 341 41541-11 E office@icl-ing.com Vorhaben: Neubau/ Erweiterung der Oberschule Malschwitz

Ort: Am Park 3


02694 Malschwitz,OT Baruth

Seite von 7

Nr./Pos.: 1B-R-OG-03

TB-Auflagerpressung TB-MAP 02/2021 (FRILO R-2021-2/P09)

<u>Grafik</u>

<u>Grundparameter</u>

MW-Norm: DIN EN 1996-1-1/NA:2012-05

Bemessungssituation =

Art der Bemessung = genau

Material KSP-12-1,0-DM

GammaM = 1.76

Druckfestigkeit $f_k = 7.00 \text{ N/mm}^2 \text{ fd} = 3.97 \text{ N/mm}^2$

System

Ergebnisse

mb BauStatik S340.de

Vorhaben: Neubau/ Erweiterung der Oberschule Malschwitz

Ort: Am Park 3

02694 Malschwitz, OT Baruth

Seite von 6

Nr./Pos.: 1B-R-EG-KS

Pos. 1B-R-EG-KS ?U_gUbXghY|bgh~fnY~]b~XYb~K}bXYb~]a~9;

OE ~* | ``} å Ás^\ÁQ}^}, æ) å• œê|\^Áq[} ÁGI&{ Ási oÁsiða ÁN{ •^c `}*Áq[} ÁSÙ-Ø|æ&@o>|:^} Áy`¦Ási ÁÙd^sji.-[¦{ ææÁ 1 ÖØÁ 4* 18&@È

Òã, ã\^} å^Ææ o4*^{ êi ÁÖ^&\^} à^{ ^•• `} *ÁÚ[•ÈÁFÓ´Y-EG-LUS auf

' Œi^}¸ê}å^

 $F_{Z,Ed} = 72,63 \text{ kN/m}$

Q}^} ê}å^kÁ

 $F_{Z,Ed} = 146,38 \text{ kN/m}$

 $OEi ^{\circ}$ ê} å^} kÁ h = 76,00 cm

(101,00 cm inkl. Decke)

 $\mathbb{Q}^{\}$ $\hat{\mathbb{Q}}^{\}$ $\hat{\mathbb{Q}^{\}$ $\hat{\mathbb{Q}}^{\}$ $\hat{\mathbb{$

Öan AÒaj, āl\`}*Ásĕ-Ásan Áv ê}a^ÁsjÁræĕ]o•]æa}}¦a&@c`}*Án!*āa oÁn a&@Ásan¦Án ajn^}ÁG(-Lastein zug >à^¦• &@ê* ð K

 $Y \hat{e} \hat{A}_{A} \hat{A}_{A} \hat{A}_{C} \hat{A$ = 34,62 kN/m

Ő^{ êi Ása^¦ÁÓ^{ ^••ˇ}*• ̞ ãsa^¦•œê}å^Ás[}ÁSÙ-Ø|æ&@o>¦:^}Ájā,åÁsiÁsa^¦ÁŒi^} 。æþåÊÂÚo>¦:^ÁsãAá`Á einer lichten Weite von 1,01 m als KS- Ø a&@ c |: Á { • ^c àæ Á QÓ ^ ã A ã ^ | Á DE - |æ ^ | | ê } * ^ Á ç | } ÁF | É Á& DÈ

Õ^{ êi Ás^¦ÁÓ^{ ^••`}*• ãs^¦•œê} å^Ás[}ÁSÙ-Ølæ&@o>¦:^}Ánã,åÁsÁs^}ÁQ}^} _ ê}å^}Á`^\Á`'Á Hauptspannrichtung der Decke KS- Ùo-: ^Á&@Áã.•^c àæÈ

Õ^{ êiÁs^¦ÁÓ^{ ^••`}*•¸ãs^¦•œê}å^Áş[}ÁSÙ-Ø|æ&&@o~¦:^}ÁnājåÁsjÁs^}ÁQ}^}, ê}å^} ÁsjÁ ^a,^|ÁOE |ae ^||ê} * ^Áç[} ÁFÏ É Á& DÈ

OE•Áå^¦Ájæ&@{|*^}å^}ÁVæà^||^Át^@}Áåæ}ÁÓ^{{ ^••`}*• āå^¦•œê}å^Áå^¦ÁSÙ-Ø|æ&@⇔¦:^Á@¦ç[¦È

Aus der DIN 4102-I Á/æà ÞÁ GÁ* à AÓ & ÁSÙ- Flachsturze eine Feuerwiderstandsklasse von F90-A. Öælæĕ-Áan^: 21 @An 28 @Áaæ ÁOE • & @20 i ^} a Áæa) * ^ @ea) * ^ } ^ ÁÖ[\ `{ ^} An Ásù- Flachsturze.

Neubau/ Erweiterung der Oberschule Malschwitz Vorhaben: Ort:

Am Park 3

02694 Malschwitz, OT Baruth

Seite von 6

Nr./Pos.: 1B-R-EG-KS

Anlage 13

Mörtel

zur Typenstatik für KS-Flachstürze,

Formate NF, NF17.5, 2DF, 3DF, 4DF, 150, 200, 214

KS-Flachstürze *)

Antragsteller: Werbegemeinschaft KS-Sturz, Remsfeld

Steinformat : 4 **DF** (Breite B = 24,0 cm)

Auflagertiefe: 11,5 bzw. 17,5 cm

Bewehrung : 2 Ø 10 - B500A oder B500B

: Übermauerung mit Vollsteinen nach DIN EN 771-2:2015-11 Druckzone

in Verb. mit DIN 20000-402:2017-01

ausschließlich mit vermörtelten Stoß- und Lagerfugen!!

(auch bei Plansteinmauerwerk)

Normalmörtel (mind. MG IIa) oder Dünnbettmörtel

Anlage Nr.: .. 14... zum Bescheid

Prüf.-Nr.: 04/19 vom 9.04.2919

Als Typenprüfung in statischer Hinsicht geprüft

Hannover, den 9, 04, 2019 Landeshauptstadt Hannover Prüfamt für Baustatik

Druckzone aus Mauerwerk

	Bemessungswert der Beanspruchungen e _d = g _d + q _d [kN/m] (Bemessungsgrößen)											
t Ln t	Sturzhöhe h [cm]											
	23	3,8	36	5,3	48	3,8	61	1,3	73	3,8		
lichte Weite				A	uflagerti	efe t [cm	1]					
Ln [m]	11,5	17,5	11,5	17,5	11,5	17,5	11,5	17,5	11,5	17,5		
0,635	_	30,78	_	100,09	-	113,41	-	113,41	_	113,41		
0,760	26,86	24,00	68,99	68,68	68,99	98,25	68,99	98,25	68,99	98,25		
0,885	21,49	19,58	58,68	51,59	60,37	86,66	60,37	86,66	60,37	86,66		
1,010	17,84	16,48	45,51	40,98	53,66	77,52	53,66	77,52	53,66	77,52		
1,135	15,22	14,20	36,93	33,81	48,29	70,05	48,29	70,13	48,29	70,13		
1,260	13,24	12,46	30,94	28,67	43,90	56,63	43,90	64,02	43,90	64,02		
1,385	11,71	11,09	26,54	24,82	40,25	47,29	40,25	58,89	40,25	58,89		
1,510	10,49	9,99	23,19	21,85	37,15	40,44	37,15	54,52	37,15	54,52		
1,635	9,49	9,08	20,55	19,48	34,50	35,23	34,50	50,75	34,50	50,75		
1,760	8,66	8,32	18,43	17,56	32,20	31,15	32,20	47,48	32,20	47,48		
1,885	7,97	7,67	16,70	15,97	29,36	27,87	30,18	44,59	30,18	44,59		
2,010	7,37	6,99	15,25	14,63	26,41	25,18	28,41	40,16	28,41	42,04		
2,135	6,59	6,25	14,02	13,50	23,97	22,94	26,83	36,06	26,83	39,77		
2,260	5,91	5,63	12,97	12,52	21,92	21,05	25,42	32,68	25,42	37,73		
2,385	5,34	5,09	12,06	11,67	20,19	19,44	24,15	29,85	24,15	35,88		
2,510	4,84	4,63	11,27	10,93	18,69	18,05	23,00	27,45	23,00	34,21		
2,635	4,41	4,23	10,57	10,27	17,39	16,83	21,95	25,38	21,95	32,69		
2,760	4,04	-	9,96	_	16,26	-	21,00	-	21,00	-		

*) nach der "Allgemeinen bauaufsichtlichen Zulassung Nr. Z-17.1-978"

Nächster Sichtvermerk durch das Prüfamt für Baustatik der Landeshauptstadt Hannover ist spätestens am 9.4.2024 erforderlich

Diezmannstraße 5 D-04207 Leipzig T +49 341 41541-0 F +49 341 41541-11 E office@icl-ing.com Vorhaben: Neubau/ Erweiterung der Oberschule Malschwitz

Ort: Am Park 3

02694 Malschwitz, OT Baruth

Seite von 6

Nr./Pos.: 1B-R-EG-KS

Anlage 21 zur Typenstatik für KS-Flachstürze,

Formate NF, NF17.5, 2DF, 3DF, 4DF, 150, 200, 214

KS-Flachstürze *)

Anlage Nr.: .22. zum Bescheid Prüf.-Nr.: 04/18 vom 9.04.2049

Antragsteller: Werbegemeinschaft KS-Sturz, Remsfeld

Steinformat : 4 **DF** (Breite B = 24,0 cm)

Auflagertiefe: 11,5 bzw. 17,5 cm

Bewehrung : $2 \varnothing 10 - B500A$ oder B500B

Druckzone : Übermauerung mit Lochsteinen nach DIN EN 771-2:2015-11

in Verb. mit DIN 20000-402:2017-01

ausschließlich mit vermörtelten Stoß- und Lagerfugen!!

(auch bei Plansteinmauerwerk)

Mörtel : Normalmörtel (mind. MG IIa) oder Dünnbettmörtel

Druckzone aus Mauerwerk

Als Typenprüfung in statischer Hinsicht geprüft
Hannover, den 9.04 20.19 Landeshauptstadt Hannover Prüfamt für Baustatik
Le er and Sachbearbeiter

	Bemessungswert der Beanspruchungen e _d = g _d + q _d [kN/m] (Bemessungsgrößen)											
t Ln t		Sturzhöhe h [cm]										
	23	3,8	36	3,3	48	3,8	61	1,3	73	3,8		
lichte Weite				F	uflagerti	iefe t [cm	1]					
Ln [m]	11,5	17,5	11,5	17,5	11,5	17,5	11,5	17,5	11,5	17,5		
0,635	-	30,78	-	98,83	-	113,41	_	113,41	-	113,41		
0,760	26,86	24,00	68,99	68,68	68,99	98,25	68,99	98,25	68,99	98,25		
0,885	21,49	19,58	58,68	51,59	60,37	86,66	60,37	86,66	60,37	86,66		
1,010	17,84	16,48	45,51	40,98	53,66	77,52	53,66	77,52	53,66	77,52		
1,135	15,22	14,17	36,93	33,81	48,29	70,05	48,29	70,13	48,29	70,13		
1,260	12,87	11,81	30,94	28,67	43,90	56,63	43,90	64,02	43,90	64,02		
1,385	10,81	9,99	26,54	24,82	40,25	47,29	40,25	58,89	40,25	58,89		
1,510	9,21	8,57	23,19	21,85	37,15	40,44	37,15	54,52	37,15	54,52		
1,635	7,94	7,42	20,55	19,48	34,50	35,23	34,50	50,75	34,50	50,75		
1,760	6,92	6,50	18,43	17,32	32,20	31,15	32,20	47,48	32,20	47,48		
1,885	6,08	5,73	16,21	15,28	29,36	27,87	30,18	44,59	30,18	44,59		
2,010	5,39	5,09	14,36	13,58	26,41	25,18	28,41	39,91	28,41	42,04		
2,135	4,80	4,56	12,81	12,15	23,88	22,65	26,83	35,70	26,83	39,77		
2,260	4,31	4,10	11,50	10,94	21,43	20,39	25,42	32,13	25,42	37,73		
2,385	3,89	3,71	10,37	9,89	19,34	18,44	24,15	29,07	24,15	35,88		
2,510	3,53	3,37	9,41	8,99	17,54	16,77	23,00	26,43	23,00	34,21		
2,635	3,22	3,08	8,57	8,21	15,98	15,31	21,95	24,13	21,95	32,69		
2,760	2,94	_	7,84	-	14,62	-	21,00	-	21,00	_		

*) nach der "Allgemeinen bauaufsichtlichen Zulassung Nr. Z-17.1-978"

Nächster Sichtvermerk durch das Prüfamt für Baustatik der Landeshauptstadt Hannover ist spätestens am 9. 4. 2026 erforderlich

Diezmannstraße 5 D-04207 Leipzig T +49 341 41541-0 F +49 341 41541-11 E office@icl-ing.com Vorhaben: Neubau/ Erweiterung der Oberschule Malschwitz

Ort: Am Park 3

02694 Malschwitz,OT Baruth

Seite von 6

Nr./Pos.: 1B-R-EG-KS

Neubau/ Erweiterung der Oberschule Malschwitz Vorhaben:

Ort: Am Park 3

02694 Malschwitz, OT Baruth

Seite von 6

Nr./Pos.: 1B-R-EG-KS

Überbrücken von Wandöffnungen

Knackpunkt Sturz

die Bedingungen, die bei Bauvorhaben zu beachten sind. Eine exponierte Stellung nimmt dabei das Thema Brandschutz ein. Dabei steht das konkrete Gefahren für Leben und Gesundheit von Menschen und Tieren" Die Landesbauordnungen regeln Interesse der Abwendung von

weichungen von den gültigen technischen Vorschriften und Normen nur in sehr engen Gren-zen vor, wobei dem Zweck der Gefahrenabwehr ausdrücklich und nachweislich entsprochen LBO Baden-Württemberg, § 15). Die Bauordnungen sehen Abals Leitziel im Mittelpunkt (zit. n.

werden muss. Im Rahmen des vorbeugenden Brandschutzes kommt neben technischen Vorkehrungen dem so genannten "baulichen Brand-

nutz" eine Schlüsselrolle zu. hat die Aufgabe, möglichst hohe Standzeiten der tragenden Konstruktionsteile zu gewähr-leisten. Der zeitliche Korridor zur abhängig zwischen wenigen Minuten und mehreren Stunden -remdrettung kann situations-

Dabei gilt: Je besser der bauliche Brandschutz und damit die Feu-

Brandschutzes" der Vereinigung zur Förderung des Deutschen Brandschutzes e.V. vom Mai

formität von Stürzen sind die Aspekte Baustoffklassen, Feuerwiderstandsklassen sowie die Klassifizierung von Bauteilen zu sich insbesondere KS-Stürze bewährt, weil sie einen hinsichtlich der Standfestigkeit von Bauten neuralgischen Punkt optimal ab-

Durch eine extrem hohe Feuer-widerstandsdauer, die deutlich

grundsätzlich zwischen "nicht brennbaren" und "brennbaren" Baustoffen und leitet daraus Die DIN 4102-1 unterscheide

über der von Vergleichsbaussof-fen liegt, erfüllen KS-Stürze die Anforderungen des Brandschut-zes in vorbildlicher Weise; dies gilt für alle KS-Stürze gleicher-maßen Hintermauerstürze, Sys-tem- und Fertigteilstürze und Sichtmauerstürze). in Bezug auf den Feuerwider-stand von Bauteilen finden sich in der nach wie vor national gül-tigen DIN 4102, Brandverhalten von Baustoffen und Bauteillen". Sie fässt hinsichtlich des Brand-schutzes die Baustofffroschur-gen der leizten 50 Jahre zusam-men und berücksichtigt dabei alals nationaler Maßstab Die wesentlichen Normierungen le praxisrelevanten Baustoffe und Bauarten. Zur Beurteilung der Norm-Kon-**DIN 4102** Standfestigkeit eines neuralgischen Punktes erwiderstandsdauer der tragenden Gebäudeteile, desto einfacher die Rettung. Nähere Infor-Durch eine extrem hohe Feu

mationen zum Thema Brandent-wicklung enthält u.a. der "Leitfa-den Ingenieurmethoden des

Wanddicken, Sturzformate und Feuerwiderstandsklassen

Stürze nach DIN 4102-4 Tab. 6 F 120-A * F 30-A * F 30-A * F 90-A * F 90-A * Ziegelsturz Porenbetonsturz F60-A (F 90-A) (F 30-A) ** (F60-A) F 60-A ** (F90-A) F 90-A ** Stürze nach DIN 4102-4 Tab. 42 (F 30-A) bis (F90-A) (F 30-A) bis (F90-A) F 90-A F 90-A F 90-A (F 120-A) F 90-A (F 120-A) F 60-A (F 90-A) KS-Sturz F 120-A F 90-A 3 DF 175 x 113 Format / b x h 2 DF 115 x 113 4 DF 240 x 113 NF 175 x 71 NF 115 x 71 Wanddicke in mm 115 175 240

BRANDSCHUTZ TECHNIK

Diezmannstraße 9 D-04207 Leipzig +49 341 41541-0 +49 341 41541-11 office@icl-ing.co

Neubau/ Erweiterung der Oberschule Malschwitz Vorhaben:

Ort: Am Park 3

02694 Malschwitz, OT Baruth

Seite von 6

Nr./Pos.: 1B-R-EG-KS

Die DIN 1045–1 (Juli 2001) verlangt, dass Betonstürze grundsätzlich eine Bügelbewehrung

TECHNIK BRANDSCHUTZ

aufweisen müssen. Dies gilt auch bei kurzen Stützweiten bzw. Sturzlängen.

Auch gegenüber Ziegelstürzen sind KS-Stürze im Vorteil: Ziegel-stürze werden häufig mit einer baut. Dabei gilt für die Feuer-widerstandsklassen F-30 bis F-90: Hier ist zusätzlich eine medämmverbundsystem mit Polystyrol-Platten gilt nicht als Putzbekleidung im Sinne der DIN 4102. Zudem kann die Feuer-widerstandsklasse F 120 mit Ziemm eingebrandschutztechnisch wirksame erforderlich. Wichtiger Hinweis: Ein Wärgelflachstürzen nicht erreicht Sturzhöhe von 71 in vorbildlicher Weise.

Die guten Brandschutzeigen-schaften von KS-Stürzen liegen darin begründet, dass der Beton-kern in C 20/25 (B 25) und Bewehrung (BSt. 500S) an drei Seiten von KS-Schalen geschützt

feilweise sind KS-Stürze auch an den U-Schalen geschlossen. Die Betonüberdeckung beträgt aus Gründen des Korrosionsschutzes den Stirnseiten mit entsprechen allseitig 20 mm.

KS-Stürze besitzen hervorragen Zusammenfassung

ren Baustoffe, bereits bei einer Breite von 115 mm und einer Mindesthöhe von 113 mm die produkt bei gleicher Sturzbreite übertroffen werden. Sie erreichen, anders als alle vergleichba Brandschutzeigenschafter die von keinem Wettbewerbs Nachweis eingebaut werden. Feuerwiderstandsklasse und können ohne Bislang durften nach DIN 1045: R 1988–07 Abs.17.5.5 (5) in Ver-bindung mit der DIN 1053–1: e 1996–11 Abs.8.5.3 Stürze bis zu schutztechnisch ertüchtigt werweiterer wichtiger Aspekt:

KS-FTS-Fertigteilstürze erfüllen ebenfalls diese Brandschutzanforderungen und zwar bei einer Breite von 115 mm und einer Mindesthöhe von 196 bzw. 248 mm. Die bauaufsichtlichen Zusind zu beachten. einer Länge \leq 2,0 m auch unverbügelt hergestellt werden. Nach der DIN 1045-1, 10.3.1 können

lörg Knobloch

Die guten Brandschutz-eigenschaften liegen darin begründet, dass der Betonkern und die Bewehrung an drei Sei-ten von KS-Schalen ge-schützt werden.

Innerhalb gewisser Grenzen können Betonstürze mit einer entsprechenden Putzschicht brandproblematisch ist und vor dem daher dringend gewarnt sei. Ein ausgestattet sind. Dies ist in der zwingend vorgeschrieben. Der Achsabstand der Armierungs-DIN 4102-4 sicherheitstechnisch

steinwand (mit ohne Putzbekleidung. Das Auftragen eines leichten Spachtel-oder Dünnputzes ist hier pro-

diese Regelungen nicht mehr angewendet werden (Normenauseisen zum Betonsturzrand muss bei einer Breite von ≤ 150 mm zum Erreichen der Feuerwider-55 mm bzw. unten seitlich (u_s) 65 mm, betragen (DIN 4102–4 Tab. 6). Die Nichtbeachtung dieser Ein 11,5 cm breiter Betonsturz in standsklasse von F 90 unten (u) Vorschriften kann zu erheblichen einer 11,5 cm dicken Kalksandoder Spachtelputz) führt aus brandschutztechnischer Sicht zur einer Sicherheitsmängeln führen.

standsdauer mind. 90 Minuten) erfüllt ein KS-Flachsturz bereits

standsklasse F-90-A (Feuerwiderim Format 2 DF (115 x 113 mm) -

Hochbau übliche Feuerwider

Abminderung der Feuerwiderstandsklasse von F 90 auf F 30. technisch wie haftungsrechtlich Ein Umstand, der versicherungs-

blemlos möglich.

In der Praxis ist beim Einsatz von Betonüberdeckung

Dabei erreichen KS-Stürze innerhalb der Baustoffklasse A (nicht brennbar) die qualitativ höchste Einstufung (A1)

Benden und nichtraumabschlie-Benden Wänden und Pfeilern sowie Flachstürzen und ausbeto-Weiterhin wird im Teil 4 der DIN 4102 zwischen tragenden und nierten U-Schalen unterschie-

über Wandöffnungen Stürze

gestellt sein. Dementsprechend sind für eine dreiseitige Brand-Brandfall muss die Tragfähigkeit über eine bestimmte Zeit sichererfolgt die Einteilung in Feuer

rungen des Brandschutzes

... KS-Stürze die Anfon

widerstandsklassen. Im Bezug auf die Feuerwiderstandsklasse erzielen KS-Stürze Spitzenwerte. Die Feuerwider-standsklasse gibt die Feuerwiderstandsdauer (F) in Minuten an. suche mit der so genannten "Einheits-Temperaturzeitkurve" Der Definition liegen Brandver-

unter realistischen Einbaubedingungen (Stürze mit Belastung) Belastungen, die im Brandfall in einem Gebäude entstehen. So 15 Minuten eine Temperatur von 719 Grad Celsius erreicht, die und nach 90 Minuten bei rund 1000 Grad liegt. Ermittelt wurden diese Temperaturverläufe bei Echt-Brandversuchen, es bei Echt-Brandversuchen, es handelt sich also nicht um ab-Die daraus abgeleitete und im Sie veranschaulicht die enormen wird im Brandraum bereits nach weiterhin kontinuierlich ansteigt strakte Laborwerte. zugrunde.

Sicherheitsvorteile

Betonstürzen darauf zu achten, dass sie aus brandschutztechnischer Sicht mit einer ausrei-

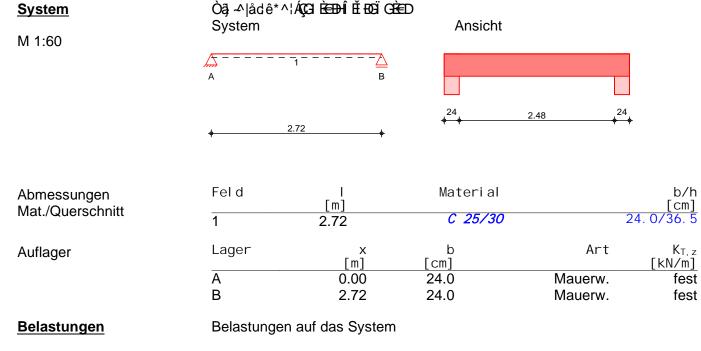
Vorhaben: Neubau/ Erweiterung der Oberschule Malschwitz Ort:

Am Park 3

02694 Malschwitz, OT Baruth

Seite von 4

Nr./Pos.: 1B-R-EG-02

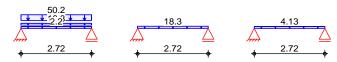

Gr6 "6 U_Yb" VYf': YbgrYf" Zzbi b['<Ui g' 'i bX'(Pos. 1B-R-EG-02

åðhÁsæd>à^¦Áæd• ơ @} å^ÁÖ^&\^Á} åÁsæ•ÁTæĕ^¦¸^¦\Áæð: čdæt^}ÆÁ, ðåÁsðhÁØ^}•ơ\'4~}`}*Áç[}ÁAð;^{ Á ٜ@Qà^d;}àæ\^}Ásà^¦•]æ;}dŽÖ&?•^¦Á;ãåÁn¦-;¦å^¦|&&@ŽåæÁnã;^ÁP^¦•¢/||°}*Ásě•ÁSÙ-Ø^¦cãt¢ã+c>¦:^}Á } 28.00Å 4* | 28.00€ dÉÅ

Ö^¦ÁÛcæ@à^q{}•ċ¦:Á, ãåÁ, ãóÁã,^¦ÁP4@Áç[}ÁHÎÉ&{Á}åÁã,^¦ÁÓ¦^ãcÁç[}ÁGIÁ&{Á@¦*^•ċ\|dÉ

Belastungen

- Òā^}*^, 3&@A, ãåÅÚ¦[*¦æ{{ ã, c^\;} Áà^\;>&\• 3&@ā c
- Belastungen nachfolgend siehe Einwirkungen entsprechend 2. Lastannahmen
 - Entspricht der Lastzusammenstellung aus Pos. 1B-W-EG-LUS Wandpos. 1.


Grafik

Belastungsgrafiken (einwirkungsbezogen)

Einwirkungen

Gk

Qk.S

Qk.N

Streckenlasten in z-Richtung

Einw. Gk

Gleichlasten

Fel d	Komm.	a	S	_ qı <u>i</u>	qre
		[m]	[m]	[kN/m]	[kN/m]
1	Eigengew	0.00	2.72		2.19
1	· à^¦T Y	0.00	2.72		16.80
1	ŒiY	0.00	2.72		50.22

mb BauStatik S340.de

3

3

0.00

0.00

84.71

84.71

0.00

0.00

Ā

В

BauStatik S340.de

Genehmigungsstatik Vorhaben: Ort:

Neubau/ Erweiterung der Oberschule Malschwitz

Am Park 3

02694 Malschwitz, OT Baruth

Seite von 4

Nr./Pos.: 1B-R-EG-02

Nachweise (Brand)

Brandschutznachweis nach DIN EN 1992-1-2

(* *EW) 1.00*Gk **Brand** 1

2 1.00*Gk +0.30*Qk.N

> **R90** Feuerwiderstandsklasse

3-seitige Beflammung

Mindestabmessungen nach Tab. 5.5 Querschnitt

> Querschnittsbreite 240 b = mm ⁻ 150 mm

> > а

а

OE&@iæà•œê}å^ mittlerer Achsabstand Balken

Ek aerf $a_{\mathtt{m}}$ OB#aa Q [m]Oš Q [-] [mm] [mm] [mm] [mm] Feld 1 0.12 1 0.6 28.03 920 40 43 -20 23 1.36 206.03 1 0.6 575 43 -8 35 40 2.60 1 0.6 28.03 920 43 -20 23 40

OE&@ æà•æ) åÁÒ₫: ^|•æà^

Ek aerf a_{R} OB#aa ^{fi} a_{R30} oš Q [m] [mm] [mm] [mm] mm] Feld 1 0.12 0.60 28.0 920 15 0 15 0 1.36 0.60 206.0 575 -8 7 40 1 15 0.60 2.60 1 28.0 920 15 0 15

OE&@ ææì• ææ} åÁÒ&\ • œêà^

X [m] asd, erf [mm] [mm] Feld 1 0.12 33 53 1.36 45 53 33 53 2.60

Nachweise (GZG)

im Grenzzustand der Gebrauchstauglichkeit nach DIN EN 1992-1-1:2011-

01

(* *EW) ĭĭæ•aËiœê}ååt 1.00*Gk +0.30*Qk.N

Verformungen

Abs. 7.4

Begrenzungen der Verformungen im gerissenen Zustand (Zustand II)

Ö^¦Ápæ&@ ^ã Á, đảÁ>¦Áåð Á *æ Æ œ} åð ^} ÁBemessungssituationen unter Langzeitbelastung å ¦&@ ^ → @dÈ

Endkriechzahl 2.50 Ò} å• &@ ā å{ æi -0.50š

1/250 zul. Endverformung zul. Differenzverformung 1/500

Grenzlinien der Verformungen f [mm]

Der Fenstersturz kann auch als Fertigteilsturz mit der entsprechenden Bewehrung und den Anforderungen an die Gebraucht Tauglichkeit realisiert werden.

Verformungsnachweis

Nachweise im Grenzzust. der Gebrauchstauglichkeit

Ort

Feld 1

[-]

0.53

OK

OK

[m]

1.36

Òã,^ÁCE,-|æt^¦|ê}*^Áş[}Á;ã,åÀHE&{ÁsaróAs^ãa•^ãaã Á `Á*^,ê@|^ãarc^}ÈÁ

Nachwei s

Nachwei s

Brand

Nachweise (GZG)

Neubau/ Erweiterung der Oberschule Malschwitz Vorhaben:

Ort: Am Park 3

02694 Malschwitz, OT Baruth

Seite von 4

Nr./Pos.: 5B-R-EG-02

Pos. 5B-R-EG-02 GHUA 'VYhooghi fn']b'AK!'K UbX'" VYf'H' f"ZZbi b[

Ò•Á, ãåÅå^¦ÁÛč¦:Á•à^¦Áå^}Á/>¦4~}*}*^}Á§,Á\$\^¦ÁTãæ^|, æ}åÁæ*•ÁTæ*^¦, ^¦\Á,æ&@^, æ*•^}ÈÖæ*•^¦Á , ã å Ásd+ ÁÒã, ~|å dê*^¦Á; ã Ásã, 02^} Ár ^ã Asc@^} Ár ^ã Asc@^} Ár ^ã Asc@^} Ár £ÊÎ { Á} å Ás^ã å • ^ã ÉÎ ^{ ÁOE +a e * ^ ¦Ás[} ÁGI & { Á æ*•*^>@Œ

Die Belastung auf den Sturz ergibt sich aus dem Deckenauflager B der Position 5B-D-EG-01. Z*•êc | 3&@Á, ãåÁFÁ ÞÐ Áæ*•Áå^¦Á à^¦{ æ*^¦*}*Áæ+Á cê}åã*^ÁÓ^|æ-č}*Áà^¦>&\•3&@ã dĚ

System

M 1:60

Ò∄ - ^|ådê* ^ ¦ÁCH ÈEEN ÈEEFÍ €ÈED System Ansicht

1.50

Abmessungen Mat./Querschnitt Fel d Materi al [m] C 25/30 1.50

b/h [cm] 24.0/24.0

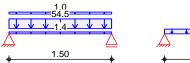
Auflager

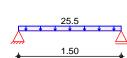
Lager	Χ	b
	[m]	[cm]
A	0.00	24.0
В	1.50	24.0

Art $K_{T,z}$ [kN/m] Mauerw. fest Mauerw. fest

Belastungen

Belastungen auf das System


Grafik


Belastungsgrafiken (einwirkungsbezogen)

Einwirkungen

Gk

Qk.N

Streckenlasten

in z-Richtung

Einw. Gk

Einw. Qk.N

(a) 1

Gleichlasten

Fel d Komm. S [m] q_{re} [kN/m] qıi [kN/m] [m]Eigengew 1.50 0.00 1.44 0.00 1.50 54.51 (a) 1 MW 0.00 1.50 1.00 0.00 1.50 25.47

(a)

aus Pos. '5B-D-EG-01'o, Lager 'B' 0: aus Modell 'LP4- RH'

mb BauStatik S340.de

Genehmigungsstatik Vorhaben: Neubau/ Erweiterung der Oberschule Malschwitz Ort: Am Park 3 +49 341 41541-0 +49 341 41541-11 office@icl-ing.co Nr./Pos.: 5B-R-EG-02 02694 Malschwitz, OT Baruth Bewehrungswahl Fel d As а I bd, I gew. $[cm^2]$ [m] [m][m] ; 6' (»%(6.16 -0.01 1.52 0.13 (\$\displaystyle \cdots \cdots \displaystyle \dinto \displaystyle \displaystyle \displaystyle \displ [à^\^Æ\$ê}*•à^, ^@`}* Fel d gew. I bd, I $[cm^2]$ [m][m][m]; 6' &» %(1.62 3.08 -0.06 0.18 ÇŠê}*^}Á§\|ÈÁK^¦æ}\^¦`}*•|ê}*^}ÊÃ,@}^ÁÛc4i^D Û * ^ | \ | aecà ^ , ^ @ * } * ÁÇÓ>* ^ | D Feld Schn. ds Xe [m] [m] [mm] [cm] 10. 0 0. 52 0. 12 **»**, 0.52 0.98 15.0 **»** . 0.98 1.38 10.0 **»**. Nachweise (Brand) Brandschutznachweis nach DIN EN 1992-1-2 Feuerwiderstandsklasse 3-seitige Beflammung Mindestabmessungen nach Tab. 5.5 Querschnitt Querschnittsbreite b =240 mm -OE&@iæà•œê}å^ mittlerer Achsabstand Balken Ek OB#aa Q $\lceil m \rceil$ Oš Q [mm] [mm] Feld 1 745 0.12 1 0.6 45.46 43 -20 593 -9 0.75 1 0.6 183.88 43 1.38 1 0.6 45.46 745 43 -20 OB&@ æà•æ) åÁÒa]: ^|•œêà^ **a**R30 OB#aa Q [m][-1 Oš Q mm] [mm] Feld 1 0.12 1 0.56 45.5 745 15 0 -9 0.75 0.56 183.9 593 15 1 1.38 1 0.56 45.5 745 15 0 OB&@ æà•æ) åÁÒ&\•æà^ x [m] asd, erf [mm] [mm] Feld 1 0.12 33 50 44 0.75 50 1.38 33 50

Nachweise (GZG)

im Grenzzustand der Gebrauchstauglichkeit nach DIN EN 1992-1-1:2011-01

Seite von 4

Lage

Lage

1

1

asw [cm²/m] 10.05

6.70

10.05

R90

mm

 $a_{\mathtt{m}}$

50

50

50

 a_R

0

0

50

mm]

[mm]

150

aerf

23

34

23

aerf

mm]

15

6

15

2.50

-0.50

š

 $\lceil mm \rceil$

lbd, r

[m]

0.13

lbd, r

[m]

0.18

2

2

Verformungen

Abs. 7.4

Begrenzungen der Verformungen im gerissenen Zustand (Zustand II)

Ö^¦ÁÞæ&@ ^ã Á, ãåÁ⊳¦ÁåãAÁ`æãĒœ}åã^} ÁBemessungssituationen unter Langzeitbelastung å \&@ ^→@dÈ

Endkriechzahl Ò} å• &@ ā å{ æi

BauStatik S340.de

mb BauStatik S340.de

Neubau/ Erweiterung der Oberschule Malschwitz Vorhaben:

Ort: Am Park 3

02694 Malschwitz, OT Baruth

Seite von 4

Nr./Pos.: 5B-R-EG-02

Nachweise (GZG) Nachweise im Grenzzust. der Gebrauchstauglichkeit

> Nachwei s x [m] 0.75 [-] 0.56

Verformungsnachweis Feld 1 OK

Durchbiegungsgrenzen und Bewehrungsvorgaben.